
scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

JupyterJupyter

pip
install
jupyter

installs jupyter

jupyter
notebook

starts jupyter notebook

Creating
a
notebook

go to new on the upper right and
click on python

Run shift + enter

File
menu

can create a new Notebook or
open a preexisting one. This is
also where you would go to
rename a Notebook. I think the
most interesting menu item is
the Save and Checkpoint
option. This allows you to
create checkpoints that you can
roll back to if you need to.

Edit
menu

Here you can cut, copy, and
paste cells. This is also where
you would go if you wanted to
delete, split, or merge a cell.
You can reorder cells here too.

View
menu

useful for toggling the visibility
of the header and toolbar. You
can also toggle Line Numbers
within cells on or off. This is
also where you would go if you
want to mess about with the
cell’s toolbar.

Jupyter (cont)Jupyter (cont)

Insert
menu

just for inserting cells above or
below the currently selected cell.

Cell
menu

allows you to run one cell, a
group of cells, or all the cells.
You can also go here to change
a cell’s type, although the toolbar
is more intuitive for that. The
other handy feature in this menu
is the ability to clear a cell’s
output.

Kernel
cell

is for working with the kernel that
is running in the background.
Here you can restart the kernel,
reconnect to it, shut it down, or
even change which kernel your
Notebook is using.

Widgets
menu

is for saving and clearing widget
state. Widgets are basically
JavaScript widgets that you can
add to your cells to make
dynamic content using Python
(or another Kernel).

Jupyter (cont)Jupyter (cont)

Help menu which is where you go to
learn about the Notebook’s
keyboard shortcuts, a user
interface tour, and lots of
reference material.

Running
tab

will tell you which Notebooks
and Terminals you are
currently running.

cell types:
Code

cell where you write code

cell types:
Raw
NBConvert

is only intended for special
use cases when using the
nbconvert command line tool.
Basically it allows you to
control the formatting in a
very specific way when
converting from a Notebook
to another format.

cell types:
Heading

The Heading cell type is no
longer supported and will
display a dialog that says as
much. Instead, you are
supposed to use Markdown
for your Headings.

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 1 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Jupyter (cont)Jupyter (cont)

cell types:
Markdown

Jupyter Notebook supports
Markdown, which is a markup
language that is a superset of
HTML. Next up some of the
possible utilities of this type of
cell will be shown. Once a
markdown cell is written, its
text cannot be changed.

 italic or italic
 # Header 1

 ## Header 2

 ### Header 3

 You can create a list (bullet
points) by using dashes, plus
signs, or asterisks. There
needs to be a space between
the marker and the letters. To
make sub lists, press tab first

 For inline code highlighting,
just surround the code with
backticks. If you want to insert
a block of code, you can use
triple backticks and also
specify the programming
language:

 `python ... ` in multiple lines

Jupyter (cont)Jupyter (cont)

Exporting
notebooks

When you are working with
Jupyter Notebooks, you will
find that you need to share
your results with non-technical
people. When that happens,
you can use the nbconvert
tool which comes with Jupyter
Notebook to convert or export
your Notebook into one of the
following formats: HTML,
LaTex, PDF, RevealJS,
Markdown, ReStructuted Text,
Executable script

How to
Use
nbconvert

Open up a terminal and
navigate to the folder that
contains the Notebook you
wish to convert. The basic
conversion command looks
like this: jupyter nbconvert
<input notebook> --to <output
format>. Example: upyter
nbconvert py_examples.ipynb
--to pdf

Jupyter (cont)Jupyter (cont)

 You can also export your
currently running Notebook
by going to the File menu and
choosing the Download as
option. This option allows you
to download in all the formats
that nbconvert supports.
However I recommend doing
so as you can use nbconvert
to export multiple Notebooks
at once, which is something
that the menu does not
support.

Extensions A Notebook extension (nbext‐
ension) is a JavaScript
module that you load in most
of the views in the Notebook’s
frontend.

Where Do
I Get
Extens‐
ions?

You can use Google or
search for Jupyter Notebook
extensions.

How Do I
Install
Them?

jupyter nbextension install
EXTENSION_NAME

enable an
extension
after
installing it

jupyter nbextension enable
EXTENSION_NAME

installing
python
packages

! pip install package_name --
user

If you see a greyed out menu item, try
changing the cell’s type and see if the item
becomes available to use.

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 2 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Evaluation Metrics and ScoringEvaluation Metrics and Scoring

Importing from sklearn.metrics import
confusion_matrix

 confusion = confusion_matri‐
x(y_test, LogisticRegression‐
(C=0.1).fit(X_train, y_train).pre‐
dict(X_test))

Accuracy (TP+TN)/(TP+TN+FP+FN)

Precision
(positive
predictive
value)

TP/(TP+FP)

Recall TP/(TP+FN)

f-score 2*(precision-recall)/(precisio‐
n+recall)

Importing
f-score

from sklearn.metrics import
f1_score

f1_score f1_score(y_test, pred_most_fr‐
equent)))

Importing
classific‐
ation
report

from sklearn.metrics import
classification_report

 classification_report(y_test,
model, target_names=["not
nine", "nine"]))

Prediction
threshold

y_pred_lower_threshold =
svc.decision_function(X_test) >
-.8

Classific‐
ation
report

classification_report(y_test,
y_pred_lower_threshold)

Importing
precis‐
on_recall‐
_curve

from sklearn.metrics import
precision_recall_curve

Evaluation Metrics and Scoring (cont)Evaluation Metrics and Scoring (cont)

using the
curve

precision, recall, thresholds =
precision_recall_curve(y_test,
svc.decision_function(X_test))

find
threshold
closest to
zero

close_zero = np.argmin(np.ab‐
s(thresholds))

 plt.plot(precision[close_zero],
recall[close_zero], 'o', marker‐
size=10, label="threshold
zero", fillstyle="none", c='k',
mew=2)

for
random
forest

precision_rf, recall_rf, thresh‐
olds_rf = precision_recall_c‐
urve(y_test, rf.predict_prob‐
a(X_test)[:, 1])

 plt.plot(precision_rf[close_de‐
fault_rf], recall_rf[close_defau‐
lt_rf], '^', c='k', markersize=10,
label="threshold 0.5 rf", fillst‐
yle="none", mew=2)

 plt.xlabel("Precision") plt.ylabe‐
l("Recall") plt.legend(loc="bes‐
t")

averag‐
e_precisi‐
on_score
(area
under the
curve)

from sklearn.metrics import
average_precision_score

Evaluation Metrics and Scoring (cont)Evaluation Metrics and Scoring (cont)

 ap_rf = average_precision_score(‐
y_test, rf.predict_proba(X_test)[:,
1])

 ap_svc = average_precision_sco‐
re(y_test, svc.decision_function‐
(X_test))

ROC
curve

from sklearn.metrics import
roc_curve

 fpr, tpr, thresholds = roc_curve‐
(y_test, svc.decision_function(X_‐
test))

 plt.plot(fpr, tpr, label="ROC
Curve")

 close_zero = np.argmin(np.abs(t‐
hresholds))

 plt.plot(fpr[close_zero], tpr[close‐
_zero], 'o', markersize=10,
label="threshold zero", fillstyle‐
="none", c='k', mew=2)

ROC
curve's
AUC

from sklearn.metrics import
roc_auc_score

 rf_auc = roc_auc_score(y_test,
rf.predict_proba(X_test)[:, 1])

 svc_auc = roc_auc_score(y_test,
svc.decision_function(X_test))

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 3 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Evaluation Metrics and Scoring (cont)Evaluation Metrics and Scoring (cont)

Micro average computes the total
number of false
positives, false
negatives, and true
positives over all
classes, and then
computes precision,
recall, and fscore using
these counts.

 f1_score(y_test, pred,
average="micro"))

Macro average omputes the
unweighted per-class f-
scores. This gives
equal weight to all
classes, no matter what
their size is.

 f1_score(y_test, pred,
average="macro"))

To change how
to evaluate
function in CV
and grid search
add the following
argument to
functions, such
as, ross_val_‐
score

scoring="accuracy"

If you do set a threshold, you need to be
careful not to do so using
the test set. As with any other parameter,
setting a decision threshold
on the test set is likely to yield overly
optimistic results. Use a
validation set or cross-validation instead.

Iris data setIris data set

importing
data set

from sklearn.datasets
import load_iris

 iris_dataset = load_iris()

data set
keys

(iris_dataset.keys()

Iris data set (cont)Iris data set (cont)

Split
the
data
into
training
and
testing

from sklearn.model_selection
import train_test_split

 X_train, X_test, y_train, y_test =
train_test_split(iris_dataset['d‐
ata'], iris_dataset['target'], train_‐
size=0.n, test_size=0.n, random‐
_state=0, shuffle=True(default,
shuffles the data),stratify=Non‐
e(default))

scatter
matrix

pd.plotting.scatter_matrix(iris_d‐
ataframe, c=y_train, figsize=(15,
15), marker='o', hist_kwds={'bins':
20}, s=60, alpha=.8 (transpar‐
enccy), cmap=mglearn.cm3)

Supervised LearningSupervised Learning

classific‐
ation

n, the goal is to predict a class
label, which is a choice from a
predefined list of possibilities

regression the goal is to predict a
continuous number, or a floati‐
ng-point number in progra‐
mming terms (or real number
in mathematical terms)

graphic
that
shows
nearest
neighbor

mglearn.plots.plot_knn_clas‐
sification(n_neighbors=1)

Preprocessing and ScalingPreprocessing and Scaling

Importing from sklear‐
n.preproc‐
essing
import
MinMax‐
Scaler

Shifts the data such that all
features are exactly
between 0 and 1

scaler =
MinMaxSca‐
ler(copy=‐
True, featur‐
e_range=(0,
1))

 scaler.fit(X‐
_train)

To apply the transformation
that we just learned—that
is, to actually scale the
training data—we use the
transform method of the
scaler

scaler.trans‐
form(X‐
_train)

To apply the SVM to the
scaled data, we also need
to transform the test set.

X_test‐
_scaled =
scaler.trans‐
form(X_test)

learning an SVM on the
scaled training data

svm =
SVC(C=100)

 svm.fit(X_tr‐
ain_scaled,
y_train)

Importing from sklear‐
n.preproc‐
essing
import
StandardS‐
caler

preprocessing using zero
mean and unit variance
scaling

scaler =
StandardS‐
caler()

Ridge regressionRidge regression

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn

Ridge
regression

is a model tuning method that
is used to analyse any data
that suffers from multicolline‐
arity. This method performs L2
regularization. When the issue
of multicollinearity occurs,
least-squares are unbiased,
and variances are large, this
results in predicted values
being far away from the actual
values.

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 4 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Ridge regression (cont)Ridge regression (cont)

Importing from sklearn.l‐
inear_model
import Ridge

Train ridge =
Ridge().fit(X_t‐
rain, y_train)

R^2 ridge.score(X_t‐
rain, y_train)

plt.hlines(y-indexes
where to plot the lines=0,
xmin=0, xmax=len(lr.c‐
oef_))

Plot horizontal
lines at each y
from xmin to
xmax.

The Ridge model makes a trade-off
between the simplicity of the model (near-
zero
coefficients) and its performance on the
training set. How much importance the
model places on simplicity versus training
set performance can be specified by the
user, using the alpha parameter. Increasing
alpha forces coefficients to move more
toward zero, which decreases
training set performance but might help
generalization.

Linear models for classificationLinear models for classification

Importing
logistic
regression

from sklearn.linear_model
import LogisticRegression

Train LogisticRegression(C=100).f‐
it(X_train, y_train)

Score logreg.score(X_train,
y_train))

Predict y_pred = LogisticRegression‐
().fit(X_train, y_train).predic‐
t(X_test)

Importing
SVM

from sklearn.svm import
LinearSVC

Using low values of C
will cause the algorithms to try to adjust to
the “majority” of data points, while using
a higher value of C stresses the importance
that each individual data point be classified
correctly.

Grid SearchGrid Search

validation
set

X_trainval, X_test, y_trainval,
y_test = train_test_split(
iris.data, iris.target, random‐
_state=0)

 X_train, X_valid, y_train,
y_valid = train_test_split(
X_trainval, y_trainval,
random_state=1)

Grid
Search
with
Cross-Val‐
idation

from sklearn.model_selection
import GridSearchCV

Trainning grid_search = GridSearchCV‐
(SVC(), param_grid, cv=5)

Find best
parameters

grid_search.best_params_

return best
score

grid_search.best_score_

best_esti‐
mator_

access the model with the
best parameters trained on
the whole training set

esults of a
grid search
can be
found in

grid_search.cv_results_

CV grid
search

GridSearchCV(SVC(),
param_grid, cv=5)

 param_grid = [{'kernel': ['rbf'],
'C': [0.001, 0.01, 0.1, 1, 10,
100], 'gamma': [0.001, 0.01,
0.1, 1, 10, 100]}, {'kernel':
['linear'], 'C': [0.001, 0.01, 0.1,
1, 10, 100]}]

Grid Search (cont)Grid Search (cont)

nested
cross-‐
val‐
idation

scores = cross_val_score(GridS‐
earchCV(SVC(), param_grid,
cv=5), iris.data, iris.target, cv=5)

Grid search is a tuning technique that
attempts to compute the optimum values of
hyperparameters. It is an exhaustive search
that is performed on a the specific
parameter values of a model.

Decision treesDecision trees

Importing
data

from sklearn.tree import
DecisionTreeClassifier

Tree tree = DecisionTreeClassifie‐
r(random_state=0)

Train tree.fit(X_train, y_train)

Score tree.score(X_train, y_train)

Pre-pr‐
unning

Argument in DecisionTree‐
Classifier: max_depth=4

Other
arguments

max_leaf_nodes, or min_sa‐
mples_leaf

Import tree
diagram

from sklearn.tree import
export_graphviz

Build tree
diagram

export_graphviz(tree, out_fi‐
le="tree.dot", class_names=‐
["malignant", "benign"], featur‐
e_names=cancer.feature_n‐
ames, impurity=False, filled‐
=True)

Feature
importance

tree.feature_importances_

Predict tree.predict(X_all)

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 5 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Decision trees (cont)Decision trees (cont)

Decision tree
regressor
importing

from sklearn.tree import
DecisionTreeRegressor

Train DecisionTreeRegressor().fit‐
(X_train, y_train)

log y_train = np.log(data_tra‐
in.price)

exponential np.exp(pred_tree)

Random
Forest
import

from sklearn.ensemble
import RandomForestCla‐
ssifier

Random
Forest

forest = RandomForestCla‐
ssifier(n_estimators=5,
random_state=2)

Train forest.fit(X_train, y_train)

gradient
boosted
trees import

from sklearn.ensemble
import GradientBoostingCl‐
assifier

Gradient
boost

gbrt = GradientBoostingCl‐
assifier(random_state=0)

Train gbrt.fit(X_train, y_train)

Score gbrt.score(X_test, y_test)

Arguments max_depth, learning_rate

often the default parameters of the random
forest already work quite well.
You can set n_jobs=-1 to use all the cores
in
your computer in the random forest.
In general, it’s a good rule of thumb to use
the default values: max_features=sqrt(n_f‐
eatures) for classification and max_fea
tures=log2(n_features) for regression.
Gradient boosted trees are frequently the
winning entries in machine learning compet‐
itions, and are widely used in industry.
First use random than boost

Uncertainty Estimates from ClassifiersUncertainty Estimates from Classifiers

Evaluate the decision
function for the samples
in X.

model.decisi‐
on_function(X_t‐
est)[:6]

Return the probability of
classifying as all classes

model.predic‐
t_proba(X_te‐
st[:6])

A model is called calibrated if the
reported uncertainty actually matches how
correct it is—in a calibrated model, a
prediction
made with 70% certainty would be correct
70% of the time.
To summarize, predict_proba and decisi‐
on_function always have shape (n_sam
ples, n_classes)—apart from decision_fun‐
ction in the special binary case.In the
binary case, decision_function only has one
column, corresponding to the “positive”
class classes_.

Feature selectionFeature selection

Importing
variance
threshold

from sklearn.feature_selection
import VarianceThreshold

Removing
columns
with high
variance

sel = VarianceThreshold(thr‐
eshold=(.8 * (1 - .8)))

 sel.fit_transform(X)

Select‐
KBest

removes all but the k highest
scoring features

Select‐
Percentile

removes all but a user-spec‐
ified highest scoring
percentage of features using
common univariate statistical
tests for each feature: false
positive rate SelectFpr, false
discovery rate SelectFdr, or
family wise error SelectFwe.

Feature selection (cont)Feature selection (cont)

Generi‐
cUnivaria‐
teSelect

allows to perform univariate
feature selection with a config‐
urable strategy.

importing
Select‐
KBest

from sklearn.feature_selection
import SelectKBest

importinhg
chi2

from sklearn.feature_selection
import chi2

 X_new = SelectKBest(chi2,
k=2).fit_transform(X, y)

Recursive
feature
elimin‐
ation

from sklearn.feature_selection
import RFE

 rfe = RFE(estimator=svc,
n_features_to_select=1,
step=1)

 rfe.fit(X, y)

Recursive
feature
elimin‐
ation with
cross-val‐
idation

from sklearn.feature_selection
import RFECV

 rfecv = RFECV(estimator‐
=svc, step=1, cv=StratifiedKF‐
old(2), scoring="accuracy",
min_features_to_select=min_‐
features_to_select,)

import
Stratifie‐
dKFold

from sklearn.model_selection
import StratifiedKFold

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 6 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Model Evaluation and ImprovementModel Evaluation and Improvement

Importing
cross
validation

from sklearn.model_selection
import cross_val_score

Cross-‐
validation

scores = cross_val_score‐
(model without fit, data, target,
cv=5)

Summar‐
izing
cross-val‐
idation
scores

scores.mean()

stratified
k-fold
cross-val‐
idation

In stratified cross-validation,
we split the data such that the
proportions between classes
are the same in each fold as
they are in the whole dataset

Provides
train/test
indices to
split data
in
train/test
sets.

KFold(n_splits=5, *, shuffle=F‐
alse, random_state=None)

 cross_val_score(logreg,
iris.data, iris.target, cv=kfold)))

Importing
Leave-‐
one-out
cross-val‐
idation

from sklearn.model_selection
import LeaveOneOut

Leave-‐
one-out
cross-val‐
idation

loo = LeaveOneOut()

 scores = cross_val_score(lo‐
greg, iris.data, iris.target,
cv=loo)

shuffle-
split
cross-val‐
idation

each split samples train_size
many points for the training set
and test_size many (disjoint)
point for the test set

Model Evaluation and Improvement (cont)Model Evaluation and Improvement (cont)

import
shuffle-split

from sklearn.model_selection
import ShuffleSplit

 shuffle_split = ShuffleSplit‐
(test_size=.5, train_size=.5,
n_splits=10)

 scores = cross_val_score(lo‐
greg, iris.data, iris.target,
cv=shuffle_split)

takes an
array of
groups as
argument
that we can
use

GroupKFold

Import
GroupKFold

from sklearn.model_selection
import GroupKFold

 scores = cross_val_score(lo‐
greg, X, y, groups, cv=Gro‐
upKFold(n_splits=3))

Predicting
with cross-‐
validation

sklearn.model_selection.cro‐
ss_val_predict(estimator, X,
y=None, , groups=None,
cv=None, n_jobs=None,
verbose=0, fit_param‐
s=None, pre_dispa‐
tch='2n_jobs', method='pred‐
ict')

Multilayer perceptrons (MLPs) or neuralMultilayer perceptrons (MLPs) or neural
networksnetworks

Importing from sklearn.neural_network
import MLPClassifier

Multilayer perceptrons (MLPs) or neuralMultilayer perceptrons (MLPs) or neural
networks (cont)networks (cont)

Train mlp = MLPClassifier(algorithm='l-‐
bfgs', activation='tanh',random_st‐
ate=0, hidden_layer_sizes=[10,1‐
0]).fit(X_train, y_train)

there can be more than one hidden layers,
for this, use a list on the hidden_layer_sizes
If we want a smoother decision boundary,
we could add more hidden units, add a
second hidden layer, or use the tanh nonlin‐
earity

Naive Bayes ClassifiersNaive Bayes Classifiers

Importing from sklearn.naive_bayes
import GaussianNB

Train and
predict

y_pred = gnb.fit(X_train, y_trai‐
n).predict(X_test)

Function class sklearn.naive_bayes.G‐
aussianNB(*, priors=None,
var_smoothing=1e-09)

There are three kinds of naive Bayes
classifiers implemented in scikit-learn:
GaussianNB, BernoulliNB, and Multinomi‐
alNB. GaussianNB can be applied to
any continuous data, while BernoulliNB
assumes binary data and MultinomialNB
assumes count data (that is, that each
feature represents an integer count of
something

Linear models for multiclass classificationLinear models for multiclass classification

Importing from sklearn.svm import
LinearSVC

Train linear
SVC

linear_svm = LinearSVC().f‐
it(X, y)

Import SVC from sklearn.svm import
SVC

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 7 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

scikit-learn Cheat Sheet
by Remidy08 via cheatography.com/159206/cs/33799/

Linear models for multiclass classificationLinear models for multiclass classification
(cont)(cont)

train svm = SVC(kernel='rbf'
(function to use with the
kernel trick), C=10 (regulari‐
zation parameter) ,
gamma=0.1 (controls the
width of the Gaussian
kernel)).fit(X, y)

plot support
vectors

sv= svm.support_vectors_

class labels
of support
vectors are
given by the
sign of the
dual coeffi‐
cients

sv_labels = svm.dual_coe‐
f_.ravel() > 0

Rescaling
method for
kernel
SVMs

min_on_training = X_train.m‐
in(axis=0)

 range_on_training = (X_train
- min_on_training).max(‐
axis=0)

 X_train_scaled = (X_train -
min_on_training) / range_‐
on_training

 X_test_scaled = (X_test -
min_on_training) / range_‐
on_training

common
technique to extend a binary classification
algorithm to a multiclass classification
algorithm is the one-vs.-rest approach. In
the one-vs.-rest approach, a binary model is
learned for each class that tries to separate
that class from all of the other classes,
resulting in as many binary models as there
are classes.

LassoLasso

Lasso using the lasso also restricts
coefficients to be close to zero,
but in a slightly different way,
called L1 regularization.8 The
consequence of L1 regulariz‐
ation is that when using the
lasso, some coefficients are
exactly zero. This means some
features are entirely ignored by
the model.

Importing from sklearn.linear_model
import Lasso

Train lasso = Lasso(alpha=0.01,
max_iter=100000).).fit(X_train,
y_train)

R^2 lasso.score(X_train, y_train)

Coeffi‐
cients
used

np.sum(lasso.coef_ != 0))

Figure
legend

plt.legend()

In practice, ridge regression is usually the
first choice between these two models.
However, if you have a large amount of
features and expect only a few of them to be
important, Lasso might be a better choice.
Note: There is a class called ElasticNet ,
which combines the penalties of Lasso and
Ridge.

Linear models for regressionLinear models for regression

Importing from sklearn.linear_‐
model import Linear‐
Regression

Split data set (from
sklearn.model_s‐
election import
train_test_split)

X_train, X_test,
y_train, y_test =
train_test_split(X, y,
random_state=42)

Linear models for regression (cont)Linear models for regression (cont)

linear
regression

lr = LinearRegression().fit(X‐
_train, y_train)

slope lr.coef_

interc‐
eption

lr.intercept_

R^2 lr.score(X_train, y_train)

scikit-learn always stores anything
that is derived from the training data in
attributes that end with a
trailing underscore. That is to separate them
from parameters that
are set by the user.

k-nearest neighborsk-nearest neighbors

Importing from sklearn.neighbors import
KNeighborsClassifier

k-nearest
neighbors

knn = KNeighborsClassifier(‐
n_neighbors=1(number of
neighbors))

Building a
model on
the
training
set

knn.fit(X_train, y_train)

 The fit method returns the knn
object itself (and modifies it in
place), so we get a string
representation of our classifier.
The representation shows us
which parameters were used
in creating the model.

Predic‐
tions

prediction = knn.predict(data)

Accuracy np.mean(y_pred == y_test))

 knn.score(X_test, y_test)

The k-nearest neighbors classification
algorithm
is implemented in the KNeighborsClassifier
class in the neighbors module.

By Remidy08Remidy08
cheatography.com/remidy08/

Not published yet.
Last updated 6th September, 2022.
Page 8 of 9.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/remidy08/
http://www.cheatography.com/remidy08/cheat-sheets/scikit-learn
http://www.cheatography.com/remidy08/
https://readable.com

	scikit-learn Cheat Sheet - Page 1
	Jupyter

	scikit-learn Cheat Sheet - Page 2
	scikit-learn Cheat Sheet - Page 3
	Evaluation Metrics and Scoring

	scikit-learn Cheat Sheet - Page 4
	Preprocessing and Scaling
	Supervised Learning
	Iris data set
	Ridge regression

	scikit-learn Cheat Sheet - Page 5
	Grid Search
	Decision trees
	Linear models for classification

	scikit-learn Cheat Sheet - Page 6
	Uncertainty Estimates from Classifiers
	Feature selection

	scikit-learn Cheat Sheet - Page 7
	Model Evaluation and Improvement
	Naive Bayes Classifiers
	Multilayer perceptrons (MLPs) or neural networks
	Linear models for multiclass classification

	scikit-learn Cheat Sheet - Page 8
	Lasso
	k-nearest neighbors
	Linear models for regression

