Cheatography

Hands-On Machine Learning Cheat Sheet by Remidyo8 via cheatography.com/159206/cs/34123/

Tips

Even though the RMSE is generally the preferred performance measure for regression tasks, in some contexts you may prefer to use another function. For example, suppose that there are many outlier districts. In that case, you may consider using the Mean Absolute Error. Computing the root of a sum of squares (RMSE) corresponds to the Euclidian norm: it is the notion of distance you are familiar with. It is also called the *l*2 norm, noted || · ||2 (or just || · ||).

Handling	Text and	Catego	orical /	Attributes

Converts classes into numbers	from sklearn.p- reprocessing import LabelE- ncoder
	encoder = LabelEncoder()
	housing_cat encoded = encoder.fit_tra- nsform(columns with categories)
Turns an a categorical atribute into a sparse matrix where each column is a class and each row an observ- ation	from sklearn.p- reprocessing import OneHot- Encoder
	encoder =

OneHotEnc-		
oder()		
housing_c-		
at_1hot =		
encoder.fit_tra-		
nsform(housi-		
ng_cat_encod-		
ed.reshape(
1,1))		

One issue with this representation is that ML algorithms will assume that two nearby values are more similar than two distant values.

Visualizing data

Visualizing data (cont)

places a legend on the axis	plt.legend()	
Plot with histograms and scatter plots	from pandas.tools.pl- otting import scatter_m- atrix	
	scatter_matrix(housin- g[list of columns], figsiz- e=(12, 8))	
some attributes have a tail-heavy distri-		

bution, so you may want to transform them (e.g., by computing their logarithm)

Feature Scaling			
from	takes a list of name/estimator		
sklear-	pairs defining a sequence of		
n.p-	steps. All but the last estimator		
ipeline	must be transformers		
import			
Pipeline			
StandardScaler()			
Machine Learning algorithms don't perform			
well when			
the input numerical attributes have very			
different scales			

Training and Evaluating on the Training Set

Correlations		
correlation matrix	data.corr()	
Data cleaning		
Drops rows with NA values	housing.drop- na(subset=["t- otal_bedroom- s"])	
DReturn the data set without a column or row (in this case it is a column)	housing.drop- ("total_bedro- oms", axis=1)	
fills NA values with the corresponding values	housing["tota- l_bedroom- s"].fillna(value)	
Imputer	from sklearn.i- mpute import SimpleImputer	

Data cleaning (cont)

Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column, or using a constant value	imputer = SimpleImp- uter(strateg- y="median")
The imputer has simply computed the median of each attribute and stored the result in its statistics_ instance variable.	imputer.fit(- data)
Returns values that we computed	imputer.stat- istics_
Transform the missing value into corresponding value (return numpy array)	X = impute- r.transform(- housin- g_num)
Transform it back to a data frame	housing_tr = pd.DataFr- ame(X, columns=h- ousing_nu- m.columns)

Scatter data.plot(kind="scatter", x="longplot itude", y="latitude", aplha=0.1 (makes the points transparent, thus allowing the visualization of high density places), s=column (determines size of the points), cmap=plt.get_cmap("jet") (color scheme), colorbar=True (makes a color bar appear), label='pop' (label of the points),c='column'-(which column the circles will base its collor off))

By Remidy08

cheatography.com/remidy08/

Not published yet. Last updated 15th September, 2022. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com