Cheatography

Hands-On Machine Learning Cheat Sheet

by Remidyo8 via cheatography.com/159206/cs/34123/

Tips

Even though the RMSE is generally the preferred performance measure for regression tasks, in some contexts you may prefer to use another function. For example, suppose that there are many outlier districts. In that case, you may consider using the Mean Absolute Error. Computing the root of a sum of squares (RMSE) corresponds to the Euclidian norm: it is the notion of distance you are familiar with. It is also called the ℓ2 norm, noted | · $\|2 \text{ (or just } \| \cdot \|).$

Handling Text and Categorical Attribute

Handling Text and Catego	orical Allributes
Converts classes into numbers	from sklearn.p- reprocessing import LabelE- ncoder
	encoder = LabelEncoder()
	housing_cat encoded = encoder.fit_tra- nsform(columns with categories)
Turns an a categorical atribute into a sparse matrix where each column is a class and each row an observ- ation	from sklearn.p- reprocessing import OneHot- Encoder

OneHotEncoder() housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(--1,1))

encoder =

One issue with this representation is that ML algorithms will assume that two nearby values are more similar than two distant values.

Visualizing data

Visualizing data (d	cont)
places a legend on the axis	plt.legend()
Plot with histograms and scatter plots	from pandas.tools.pl- otting import scatter_m- atrix
	scatter_matrix(housin- g[list of columns], figsiz- e=(12, 8))

some attributes have a tail-heavy distribution, so you may want to transform them (e.g., by computing their logarithm)

Feature Scaling

from	takes a list of name/estimator
sklear-	pairs defining a sequence of
n.p-	steps. All but the last estimator
ipeline	must be transformers
import	
Pipeline	

StandardScaler()

different scales

Machine Learning algorithms don't perform the input numerical attributes have very

Training and Evaluating on the Training Set

Correlations

correlation matrix data.corr()

Ю	a	ta	C	ea	ni	in	ď

Data cleaning	
Drops rows with NA values	housing.drop- na(subset=["t- otal_bedroom- s"])
DReturn the data set without a column or row (in this case it is a column)	housing.drop- ("total_bedro- oms", axis=1)
fills NA values with the corresponding values	housing["tota- l_bedroom- s"].fillna(value)
Imputer	from sklearn.i- mpute import SimpleImputer

Data cleaning (cont)	
Replace missing values using a descriptive statistic	imputer = SimpleImp-
(e.g. mean, median, or most frequent) along each column, or using a constant value	uter(strateg- y="median")
The imputer has simply computed the median of each attribute and stored the result in its statistics_instance variable.	imputer.fit(- data)

•
Transform the missing valu
into corresponding value
(return numpy array)

Returns values that we

computed

frame

X = imputer.transform(housing_num)

housing_tr = pd.DataFr-

imputer.stat-

istics_

Transform it back to a data

ame(X, columns=housing_num.columns) Scatter plot

data.plot(kind="scatter", x="long-itude", y="latitude", aplha=0.1 (makes the points transparent, thus allowing the visualization of high density places), s=column (determines size of the points), cmap=plt.get_cmap("jet") (color scheme), colorbar=True (makes a color bar appear), label='pop' (label of the points),c='column'-(which column the circles will base its collor off))

By Remidy08 cheatography.com/remidy08/

Not published yet. Last updated 15th September, 2022. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com