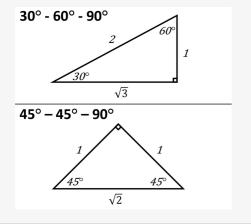


Geometry EOC Cheat Sheet by RednBlueArtist (RednBlueArtist) via cheatography.com/212862/cs/46344/

Formulas of 2-D and 3-D Figures


Lateral Area, Surface Area & Volume P = primiter of base B = a rate of base B = a rate of base I = start height Surface Area of a Prism: LA = PH + 2B I = start height Surface Area of a Cylinder: $LA = 2\pi rH$ Circle: $A = \pi r^2$ Surface Area of a Cylinder: $A = 2\pi rH$ Triangle: $A = \frac{bh}{2}$ Surface Area of a Cylinder: $A = \frac{2\pi rH}{2}$ Surface Area of a Pyramid: $A = \frac{\frac{bh}{2}}{2}$ Surface Area of a Pyramid: $A = \frac{eh}{2} + B$ Volume of a Prism: V = BH Use of a Cylinder: $V = \pi r^2 H$ Surface Area of a Cone: $A = \pi r^2 H$ Surface Area of a Cone: $A = \pi r^2 H$ Surface Area of a Cone: $A = \pi r^2 H$ Surface Area of a Sphere: $A = \pi r^$

Pythagorean Theorem

 $a^2 + b^2 = c^2$

If $a^2 + b^2 = c^2$, then the triangle is **right** If $a^2 + b^2 > c^2$, then the triangle is **acute** If $a^2 + b^2 < c^2$, then the triangle is **obtuse**

Special Right Triangles

Arc Length and Sector Area

Arc Length	(M/360)*2πr
Sector Area	(M/360)*πr ²

M = angle measure of sector

Coordinate Formulas

Distance between 2 points $\sqrt{((x_2-x_1)^2+(y_2-y_1)^2)}$ Midpoint of a line segment $(x_2+x_1)/2, (y_2+y_1)/2$ Slope Formula $(y_2-y_1)/(x_2-x_1)$

Congruent Triangles

Valid SSS, SAS, ASA, AAS, & HL

NOT Valid SSA or the coverse

HL only applies to right triangles

Equation of a Circle

Circles:

Equation of circle center at origin: $x^2 + y^2 = r^2$ where r is the radius. Equation of circle not at origin: $(x-h)^2 + (y-k)^2 = r^2$ where (h,k) is the center and r is the radius.

Parallel Lines cut by a Transversal

Parallels: If lines are parallel ...

Corresponding angles are equal.
m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8

Alternate Interior angles are equal.
m<3=m<6, m<4=m<5

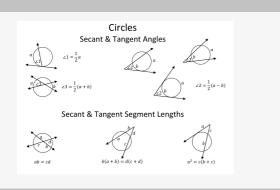
Alternate Exterior angles are equal.
m<1=m<8, m<2=m<7

Same side interior angles are supp. m<3+m<5=180, m<4+m<6=180

Polygon Interior/Exterior Angles		
Sum of Int. Angles	180(n - 2)	
Each Int. Angle Measure	180(n - 2)/n	
Sum of Ext. Angles	360	
Each Ext. Angle Measure	360/n	

Conditionals	
Conditional (Original)	if p, then q
Converse	If q, then p
Inverse	If not p, then not q
Contrapositive	If not q, then not p
Biconditional	p if and only if q

By RednBlueArtist (RednBlueArtist)


Published 13th May, 2025. Last updated 19th May, 2025. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/rednblueartist/

Geometry EOC Cheat Sheet by RednBlueArtist (RednBlueArtist) via cheatography.com/212862/cs/46344/

Circles

Trigonometric Ratios

Trigonometric Ratios

$$\sin x^{\circ} = \frac{a}{c}$$

$$\cos x^{\circ} = \frac{b}{c}$$

$$a$$

Triangle		
Scalene	no congruent sides	
Isosceles	2 congruent sides	
Equilateral	3 sides congruent	
Equiangular	3 congruent angles (60 degrees)	
Acute	all acute angle	
Diaht	one right angle	

Acute all acute angle
Right one right angle
Obtuse one obtuse angle

Equiangular = Equilateral

Exterior angle of a triangle equals the sum of the 2 non-adjacent interior angles

Mid-segment of a triangle is parallel to the third side and half the length of the third side

Transformation Rules

Type of Transformation	Change to Coordinate Point
Vertical translation up d units	$(x,y) \rightarrow (x,y+d)$
Vertical translation down d units	$(x,y) \rightarrow (x,y-d)$
Horizontal translation left c units	$(x,y) \rightarrow (x-c,y)$
Horizontal translation right c units	$(x,y) \rightarrow (x+c,y)$
Reflection over x-axis	$(x,y) \rightarrow (x,-y)$
Reflection over y-axis	$(x,y) \rightarrow (-x,y)$

By RednBlueArtist (RednBlueArtist)

Published 13th May, 2025. Last updated 19th May, 2025. Page 2 of 2. Sponsored by Readable.com

Measure your website readability!

https://readable.com