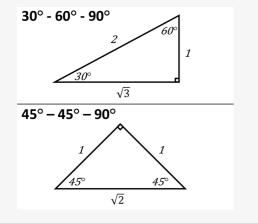


Geometry EOC Cheat Sheet by RednBlueArtist via cheatography.com/212862/cs/46344/

Formulas of 2-D and 3-D Figures


Lateral Area, Surface Area & Volume B P = perimeter of base B α area of base B area of a brism: LA = PH Surface Area of a Prism: LA = PH Surface Area of a Prism: LA = PH + PH Rectangle: A = bh Circle: $A = \pi r^2$ Surface Area of a Cylinder: $A = 2\pi rH + 2\pi r^2$ Triangle: $A = \frac{bh}{2}$ Surface Area of a Cylinder: $A = \frac{bh}{2}$ Surface Area of a Pyramid: $LA = \frac{pH}{2} + PH$ Volume of a Prism: V = BH Using a Cylinder: $V = \pi r^2 H$ Lateral Area of a Dynamid: $A = \frac{bh}{2} + B$ Volume of a Cylinder: $V = \pi r^2 H$ Lateral Area of a Cone: $A = \pi r U$ Volume of a Cylinder: $V = \frac{m^2 H}{2}$ Surface Area of a Cone: $A = \pi r U$ Volume of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Volume of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Volume of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$ Surface Area of a Sphere: $A = \frac{h}{2} + \frac{h}{2} + \frac{h}{2}$

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

If $a^2 + b^2 = c^2$, then the triangle is **right** If $a^2 + b^2 > c^2$, then the triangle is **acute** If $a^2 + b^2 < c^2$, then the triangle is **obtuse**

Special Right Triangles

Arc Length and Sector Area

Arc Length	(M/360)*2πr
Sector Area	(M/360)*πr ²

M = angle measure of sector

Coordinate Formulas

Distance between 2 points $\sqrt{((x_2-x_1)^2+(y_2-y_1)^2)}$ Midpoint of a line segment $(x_2+x_1)/2, (y_2+y_1)/2$ Slope Formula $(y_2-y_1)/(x_2-x_1)$

Congruent Triangles

Valid SSS, SAS, ASA, AAS, & HL

NOT Valid SSA or the coverse

HL only applies to right triangles

Equation of a Circle

Circles

Equation of circle center at origin: $x^2 + y^2 = r^2$ where r is the radius. Equation of circle not at origin: $(x-h)^2 + (y-k)^2 = r^2$ where (h,k) is the center and r is the radius.

Parallel Lines cut by a Transversal

Parallels: If lines are parallel ...

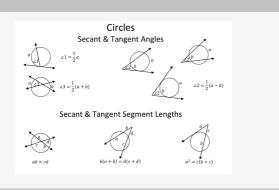
Corresponding angles are equal.
m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8
Alternate Interior angles are equal.
m<3=m<6, m<4=m<5
Alternate Exterior angles are equal.
m<1=m<8, m<2=m<7
Same side interior angles are supp.

m < 3 + m < 5 = 180, m < 4 + m < 6 = 180

Polygon Interior/Exterior Angles		
Sum of Int. Angles	180(n - 2)	
Each Int. Angle Measure	180(n - 2)/n	
Sum of Ext. Angles	360	
Each Ext. Angle Measure	360/n	

Conditionals	
Conditional (Original)	if p, then q
Converse	If q, then p
Inverse	If not p, then not q
Contrapositive	If not q, then not p
Biconditional	p if and only if q

By RednBlueArtist


Published 13th May, 2025. Last updated 13th May, 2025. Page 1 of 2. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!

https://apollopad.com

Geometry EOC Cheat Sheet by RednBlueArtist via cheatography.com/212862/cs/46344/

Trigonometric Ratios

Trigonometric Ratios

$$\sin x^{\circ} = \frac{a}{c}$$

$$\cos x^{\circ} = \frac{b}{c}$$

$$\tan x^{\circ} = a$$

Triangle Scalene r Isosceles 2

no congruent sides

Cavilatoral

2 congruent sides

Equilateral

3 sides congruent

Equiangular

3 congruent angles (60 degrees)

Acute

all acute angle

Right

one right angle

Obtuse

one obtuse angle

Equiangular = Equilateral

Exterior angle of a triangle equals the sum of the 2 non-adjacent interior angles

Mid-segment of a triangle is parallel to the third side and half the length of the third side

By RednBlueArtist

Published 13th May, 2025. Last updated 13th May, 2025. Page 2 of 2.

cheatography.com/rednblueartist/

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com