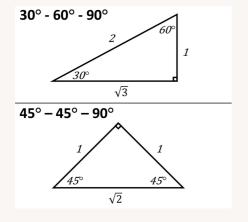


Geometry EOC Cheat Sheet by RednBlueArtist (RednBlueArtist) via cheatography.com/212862/cs/46344/

Formulas of 2-D and 3-D Figures

Lateral Area, Surface Area & Volume Lateral Area of a Prism: LA = PHSurface Area of a Prism: SA = PH + 2BB = area of base


l = slant height Lateral Area of a Cylinder: $LA=2\pi rH$ Surface Area of a Cylinder: $SA=2\pi rH+2\pi r^2$ Lateral Area of a Pyramid: $LA = \frac{Pl}{2}$ Surface Area of a Pyramid: $SA = \frac{Pl}{R} + B$ Volume of a Prism: V = BH blume of a Cylinder: $V = \pi r^2 H$ Lateral Area of a Cone: $LA = \pi r l$ me of a Cone: $V = \frac{\pi r^2 H}{3}$ ne of a Pyramid: $V = \frac{BH}{3}$

Pythagorean Theorem

 $a^2 + b^2 = c^2$

If $a^2 + b^2 = c^2$, then the triangle is **right** If $a^2 + b^2 > c^2$, then the triangle is acute If $a^2 + b^2 < c^2$, then the triangle is **obtuse**

Special Right Triangles

Arc Length and Sector Area

Arc Length $(M/360)*2\pi r$ $(M/360)*\pi r^2$ Sector Area

M = angle measure of sector

Coordinate Formulas

 $\sqrt{((x_2-x_1)^2+(y_2-y_1)^2)}$ Distance between 2 points Midpoint of a line segment $(x_2 + x_1)/2, (y_2 + y_1)/2$ Slope Formula $(y_2 - y_1)/(x_2 - x_1)$

> By RednBlueArtist (RednBlueArtist)

Published 13th May, 2025. Last updated 17th June, 2025.

Congruent Triangles

Valid SSS, SAS, ASA, AAS, & HL

NOT Valid SSA or the coverse

HL only applies to right triangles

Equation of a Circle

Equation of circle center at origin: $x^2 + y^2 = r^2$ where r is the radius. Equation of circle not at origin: $(x-h)^2 + (y-k)^2 = r^2$ where (h,k) is the center and r is the radius.

Parallel Lines cut by a Transversal

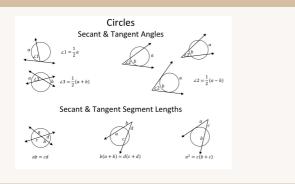
Parallels: If lines are parallel ...

Corresponding angles are equal. m<1=m<5, m<2=m<6, m<3=m<7, m<4=m<8 Alternate Interior angles are equal. m < 3 = m < 6, m < 4 = m < 5Alternate Exterior angles are equal. m<1=m<8, m<2=m<7 Same side interior angles are supp.

m < 3 + m < 5 = 180, m < 4 + m < 6 = 180

Polygon Interior/Exterior Angles	
Sum of Int. Angles	180(n - 2)
Each Int. Angle Measure	180(n - 2)/n
Sum of Ext. Angles	360
Each Ext. Angle Measure	360/n

Conditionals	
Conditional (Original)	if p, then q
Converse	If q, then p
Inverse	If not p, then not q
Contrapositive	If not q, then not p
Biconditional	p if and only if q


Sponsored by Readable.com Measure your website readability! Page 1 of 2. https://readable.com

cheatography.com/rednblueartist/

Geometry EOC Cheat Sheet by RednBlueArtist (RednBlueArtist) via cheatography.com/212862/cs/46344/

Circles

Trigonometric Ratios

Trigonometric Ratios

$$\sin x^{\circ} = \frac{a}{c}$$

$$\cos x^{\circ} = \frac{b}{c}$$

$$a$$

Triangle

Scalene no congruent sides

Isosceles 2 congruent sides

Equilateral 3 sides congruent

Equiangular 3 congruent angles (60 degrees)

Acute all acute angle

Right one right angle

Obtuse one obtuse angle

Equiangular = Equilateral

Exterior angle of a triangle equals the sum of the 2 non-adjacent interior angles

Mid-segment of a triangle is parallel to the third side and half the length of the third side

Transformation Rules

Type of Transformation	Change to Coordinate Point
Vertical translation up d units	$(x,y) \rightarrow (x,y+d)$
Vertical translation down d units	$(x,y) \rightarrow (x,y-d)$
Horizontal translation left c units	$(x,y) \rightarrow (x-c,y)$
Horizontal translation right c units	$(x,y) \rightarrow (x+c,y)$
Reflection over x-axis	$(x,y) \rightarrow (x,-y)$
Reflection over y-axis	$(x,y) \rightarrow (-x,y)$

By **RednBlueArtist** (RednBlueArtist)

Published 13th May, 2025. Last updated 17th June, 2025. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com