Cheatography

Organic Chemistry ACS Study Guide Cheat Sheet by rebeconn via cheatography.com/77777/cs/19039/

Combust	tion			
Complete	e+ O2> CO2 + H2O			
Incomplet	te+ O2> CO +H2O			
	+ O2> C +H2O			
Alkane/Ether				
Balance Carbon> Hydrogen> Oxygen				
Halogenation				
Alkene	H2C=CH2 + Br2> H2C(Br)CH2(Br)			
Alkyne	same as alkene, but double addition reagent			
+Cl2 or Br2				
Addition of Simple Acids				
Alkene	CH2=CH2+HCI> CH3-CH2(CI)			
Alkyne	Same as Alkene, but twice addition reagent			
+HBr or HCI				
<i>Markovnikov's Rule</i> : Hydrogen goes to Carbon with more Hydrogen; the rich get richer				

Hydration

Alkene	H2C=CH2 + H-OH> CH3- CH2(OH)	
Alkyne	Same as Alkene, but twice the addition reagent	
+H2O & Acid Catalyst (Pt, Pd, Ni)		

Markovnikov's Rule: the rich get richer

Hydrogenation	
Alkene	H2C=CH2 + H2> CH3-CH3
Alkyne	Same as Alkene, but twice the addition reagent
Aldehy de	CH2(O) + H2> CH3(OH)
Ketone	H3CC(O)CH3 + H2> H3C- CH(OH)-CH3
Aldehyde	lkyne> Alkane > Primary Alcohol -> Secondary Alcohol
Polymer	ization
Addition	CH2=CH+CH=CH2>CH2-

Polyamides	(Cl)C(O)-(O)C(Cl) + H2N-NH2 >
Condensati on	(OH)C(O)-(O)C(OH) + HO-CH2- OH>
Addition	CH2=CH+CH=CH2>CH2- CH2-CH2-CH2

Addition Polymerization linking together many Alkene molecules through addition reactions

Carboxylic Acid: Condensation

Amide: Polyamide

Substitution

AromSwitch 1 Hydrogen with one of theaticaddition reagents

Aromatics= stable/chemically inert

Dehydration

180*C	H3C-CH2(OH)> H2C=CH2 + H2O	
140*C	H3C-OH + H3C-OH> H3C-O-CH3 + H2O	
@180*C Alcohol> Alkene		

@140*C Alcohol + Alcohol --> Ether

Requires Acid Catalyst (H2SO4)

Oxidation

Primary Alcohol --> Aldehyde Secondary Alcohol --> Ketone Tertiary Alcohol -- NR Aldehyde --> Carboxylic Acid Ketone --> NR Thiols --> Disulfide

Oxidizing Agents: K2Cr2O7; KMnO4

Tollens Reagent: 2Ag(NH3)2+ --> 2 Ag

Benedicts Reagent: 2Cu²⁺ --> Cu2O (blue) --> (red precipitate)

Dissociation

Acid: Carboxylic Acid, Phenol Donate H from -OH to H2O --> O⁻ +H3O⁺

Base: Amine Steal H from H2O --> NH_+ + OH-

Acid + H2O -->

Base + H2O -->

Neutralization

Acid + Base --> Salt + H2O

Salt Ex) O-K+

Base: KOH, NaOH Acid: Phenol, Carboxylic Acid

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By rebeconn cheatography.com/rebeconn/ Published 6th March, 2019. Last updated 6th March, 2019. Page 1 of 1.