Cheatography

by

Project setup

Keep things together in modules. All pages, components, routes,
validators, services that go with that module stay with that module.
Pages are container components, they are children of the root
component.

Only services get injected into container components, these
services will have access to persisted data.

Other components will most likely be pure components, they get all
their dependencies through @Input directives and emit all changes
to their parent through @Output directives.

Storing the routes in the module (as a routing module), saves you
time tracking it down whenever you need to make changes.

Project setup commands - sample

When setting up a new project think about how
you want it to look. Make a short list of commands
to set up your project. Open the new project in
your IDE, if things do not feel right, adjust your
list and run it again. I have added an example
below.

ng new sample

ng g m core

ng g m core/modules/homepage

ng g ¢ core/modules/homepage/containers/homepage
ng g m core/modules/products

ng g ¢ core/modules/products/containers/product-
view

ng g ¢ core/modules/products/containers/product-
edit

ng g ¢ core/modules/products/containers/product-
add

ng g ¢ core/modules/products/components/product -
form

ng g ¢ core/modules/products/services/product

ng g m core/modules/contact

ng g ¢ core/modules/contact/containers/contact

Make many more so you get a good feel of how your

decisions will impact the project. Make changes,

delete the project and run you commands again.

Life cycle hooks

ngOnCh Respond when Angular (re)sets data-bound input proper-

anges()

ties. The method receives a SimpleChanges object of
current and previous property values. Called before
ngOnlnit() and whenever one or more data-bound input
properties change.

By Robert Broen (rbroen) Not published yet.

Page 1 of 1.

Last updated 18th September, 2019.

Life cycle hooks (cont)

ngOnlnit() Initialize the directive/component after
Angular first displays the data-bound
properties and sets the directive/compo-
nent's input properties. Called once, after

the first ngOnChanges().

ngDoCheck() Detect and act upon changes that Angular
can't or won't detect on its own. Called
during every change detection run,
immediately after ngOnChanges() and
ngOnlnit().

ngAfterContentlnit() Respond after Angular projects external
content into the component's view / the
view that a directive is in. Called once after

the first ngDoCheck).

ngAfterViewlnit() Respond after Angular initializes the
component's views and child views / the
view that a directive is in. Called once after

the first ngAfterContentChecked().

ngAfterViewChecked() Respond after Angular checks the compon-
ent's views and child views / the view that a
directive is in. Called after the ngAfterVi-
ewlnit() and every subsequent ngAfterCo-
ntentChecked)().

ngOnDestroy() Cleanup just before Angular destroys the
directive/component. Unsubscribe Observ-
ables and detach event handlers to avoid
memory leaks. Called just before Angular

destroys the directive/component.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!

http://www.cheatography.com/
http://www.cheatography.com/rbroen/
http://www.cheatography.com/rbroen/cheat-sheets/angular-structures
http://www.cheatography.com/rbroen/
http://crosswordcheats.com

	Angular Structures Cheat Sheet - Page 1
	Project setup
	Project setup commands - sample
	Life cycle hooks

