Cheatography

Week 5

#1)

librar y(DBI)

librar y(R SQLite)

2)

test conn <- dbConn -
ect (RS QLi te: :5Q -
Lite (),

" tes t d b.s gli te")
3)

file.i nfo ("te st -
db.s gl ite ")

4)

test_conn

Needed Library's | Create
Connection Special File | List

Files in Folder | Test connection
find where it exists

Week 5 | Basic Operations

Week 5 | Useful Commands

This are the main ones
we’ll need.

Connec tions

dbConn ect ()

dbDisc onn ect ()
dbCanC onn ect ()
Finding out what is in
the database

dbList Tab les ()
dbExis tsT able()
dbList Fie 1lds ()
Fetching data from and
Writing data to the
database

dbRead Table ()
dbWrit eTa ble() (note
overwrite and append
options)

dbRemo veT able ()

dbGetQ uery ()

Contro 1lling queries and
changes to the database
dbExec ute ()

dbBegin ()

dbCommit ()

dbRoll back()

dbFetch ()

Week 5 | Read + Delete Table

1)

test conn <- dbConn -
ect (RS QLi te: :SQ -
Lite(), " tes t d b.s -
qli te")

dbRead Tab le(tes -

t conn, " vic sch ool -
s")

2)

vv <- dbRead Tab le(-

"

tes t conn, vic sch -
ool s")

Vv

3)

dbList Tab les (te st -

conn)

Week 5 | Read + Delete Table
(cont)

> dbRemoveTable(test_conn, "-
vicschools")

Reading | Storing | Deleting

Week 5 | Rolling

By default when SQLite
starts it is in auto-
commit mode:

so that all changes that
are requested are
automa tically made
permanent.

To make a set of
tenative changes enter
commit mode using

the dbBegin () command:
dbBegi n(t est conn)
Then make a series of
changes to the database.
If you want to keep the
changes go:

dbComm it (tes t conn)
or if you want to
abandon the changes go:
dbRoll bac k(t est -
_conn)

This abandons all
changes made after the
dbBegin () statement.
After either of these
two calls (dbCommit or
dbRoll back)

the database is back in

auto-c ommit mode

Week 5 | Rolling

By default when SQLite
starts it is in auto-
commit mode:

so that all changes that
are requested are

automa tically made

permanent.

Week 5 | Rolling (cont)

> To make a set of tenative
changes enter commit mode
using

the dbBegin() command:
dbBegin(test_conn)

Then make a series of changes
to the database.

If you want to keep the changes
go:

dbCommit(test_conn)

or if you want to abandon the
changes go:
dbRollback(test_conn)

This abandons all changes
made after the dbBegin()
statement.

After either of these two calls
(dbCommit or dbRollback)

the database is back in auto-c-
ommit mode

Week 6 | Using SQL select

1)

librar y(DBI)

librar y (R SQLite)

test conn <- dbConn -
ect (RS QLi te: :SQ -
Lite(), " tes t d b.s -
gli te™)

surf <- read.c sv(" -
sur f.c sv")

dbWrit eTa ble (te st -

" "

conn, sur fsh ort ",
surf([l :10 ,1:8],
overwr ite =TRUE)

2)

dbGetQ uer y(t est -
_conn, " SELECT * FROM
surfsh ort ")

ss <- dbGetQ uer y(t -
est conn, " SELECT *
FROM surfsh ort "

3)

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot

1)

dbList Tab les (te st -
conn)

2)

schools <- data.f ram -

e (S chool=

c ("M ath ematics and

Statis tic s"),

Cod e=c ("SM s","S GEE -

sy,
Fac ult y=c ("Sc ien -
ce", " Sci enc e")

)
schools
3)

dbWrit eTa ble (te st -
conn, " vic sch ool s",
schools, overwr ite -
=TRUE)

dbList Tab les (te st -
conn)

4)

file.i nfo ("te st_ -
db.s gl ite ")

5)

dbDisc onn ect (te st -

conn)

Test whats in database | Define
Dataframe in R | Copy into new
database table called vicschools
| Check db file size | Need to
disconnect at end of session

By Raygun246 Not published yet.

Last updated 16th May, 2024.

Page 1 of 7.

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/raygun246/
https://readable.com

Cheatography

Week 6 | Using SQL select
(cont)

> *{sql connection=test_conn}
SELECT * FROM surfshort

4)
SELECT marital, gender FROM
surfshort

Create n start table | Select n
show table n save to var | What
tp write in markdown | select
specific column

Week 6 | Where Clause

1L)

SELECT *

FROM surfshort

WHERE Marita 1="n eve r"
2)

SELECT *

FROM surfshort

WHERE Marita 1<> " nev -
er"

3)
SELECT * FROM surfshort
WHERE Marita 1="n eve r"
4)

SELECT Age, Gender

FROM surfshort

WHERE Marita 1="n eve r"
AND Qualif ica tio -
n="s cho ol"

5)

SELECT Age, Gender,
Qualif ica tion,
Marital, Marital,

Qualif ication

FROM surfshort

WHERE (Marit al= " nev -
er" AND Qualif ica tio -
n="s cho ol") OR

Marita 1="m arr ied "

6)

By Raygun246

Week 6 | Where Clause (cont)

> SELECT Age, Gender AS
Sex, Qualification, Marital,
Marital AS MaritalStatus, Qualif-
ication

FROM surfshort

WHERE (Marital="never" AND
Qualification="school") OR
Marital="married"

7)

Common operators we want to
use in WHERE clause are:
AND

OR

NOT

and we make comparisons with
= <>

> >= < <=

LIKE

IN

IS NULL, IS NOT NULL

Here NULL is the way SQL
refers to missing data.

8)

SELECT Marital, Age, Qualif-
ication

FROM surfshort

WHERE Age IN (34,35,36,45)
ORDER BY Age DESC, Qualif-
ication

Select using Conditions | Select
not equal | select equal |
multiple condition | Mulitple
condition v2 pro | rename based
on query | Common operators |
Order by Ascending

Not published yet.

Last updated 16th May, 2024.

Page 2 of 7.

Week 6 | Creating Tables
Manipulation

1)

CREATE TABLE lecturers (
fir st name TEXT,
las t name TEXT,
sta rt week INTEGER,
end week INTEGER,
school TEXT

)

2)

SELECT * FROM lecturers

3)

INSERT INTO lecturers

(first name, last name,

school)

VALUES

("Ri cha rd", " Arn -

old " ,"sSM 3"),

("Lo uis e","M cMi lla -

n","s Ms"),

("Ry an", " Adm ira -
al", " sMs "),

("Jo hn", " Hay woo -
d","s Ms")

4)

SELECT * FROM lecturers
5)

UPDATE lecturers

SET start_ week=1,

end week=6

WHERE first name = " -
Ric har 4"

6)

UPDATE lecturers SET
school ="Ma the matics
and Statis tic s"

7)

DELETE FROM lecturers
WHERE first nam e="J -
ohn "

8)

Delete Bunch

Week 6 | Creating Tables
Manipulation (cont)

>9)

DROP TABLE lecturers

10)

SELECT Marital, COUNT(*)
FROM SURF

GROUP BY Marital

SELECT Marital, COUNT(*) AS
Number, MIN(Age) as AgeMin,
MAX(Age) as AgeMax

FROM SURF

WHERE Gender = "female"
GROUP BY Marital

Create table | Insert Data |
Insert Data V2 | Checking |
Modify | Mulitple Rows at once |
Delete | Delete bunch | Delete
Table | Counts

Week 6 | Joins

1)

SELECT *

FROM students LEFT JOIN
enrolments

ON students.idno=enrolme-
nts.idno

ORDER BY idno

2)

SELECT *

FROM enrolments INNER JOIN
students

ON students.idno=enrolme-
nts.idno

ORDER BY idno

3)

SELECT students.idno, enrolm-
ents.idno, "first.name", "last.n-
ame", course, grade

FROM students LEFT JOIN
enrolments

Sponsored by Readable.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://readable.com

Cheatography

Week 6 | Joins (cont)

ON students.idno=enrolme-
nts.idno

UNION

SELECT students.idno, enrolm-
ents.idno, "first.name", "last.n-
ame", course, grade

FROM enrolments LEFT JOIN
students

ON students.idno=enrolme-
nts.idno

ORDER BY students.idno

4)

xx <- data.frame(colour=c("R-
ed","Green","Blue"),
height=c("Tall","Tall","Short"))
yy <- data.frame(width=c("wi-
de","narrow"))
dbWriteTable(test_conn, "xx",
xx, overwrite=TRUE)
dbWriteTable(test_conn, "yy",
yy, overwrite=TRUE)

5)

merge(xX, yy)
merge(students, enrolments,
by="idno")

6)

Thus when combining two
datasets with merge():
all=FALSE (the default) keeps
only matching records (inner
join)

all=TRUE keeps all records from
both datasets, whether matching
or not (full outer join)
all.x=TRUE keeps all records
from the first dataset (left join)

By Raygun246

Week 6 | Joins (cont)

all.y=TRUE keeps all records
from the second dataset (right
join)

and

by=NULL does not use a
matching key (cross join)
by="xxx" matches on column
xxx in both tables

by.x="xxx", by.y="zzz" mathches
column xxx in the first table with
column zzz in the second. Thus
if the matching key has different
names in the two tables then the
merge() command allows us to
specify them separately.

Left Join | Inner Join | Full outer
join | Cross Join | Merging in R |
Sussy

Week 6 | Subquery

1)

We can use a subquery to
define and populate a
table

CREATE TABLE counts

AS

SELECT idno, COUNT (*) AS
ncourses

FROM enrolments

GROUP BY idno

2)

dbRemo veT abl e(t est -

"

_conn, cou nts ")
3)
CREATE TABLE counts
(idno INTEGER,

nco urses INTEGER)

4)

Not published yet.

Last updated 16th May, 2024.

Page 3 of 7.

Week 6 | Subquery (cont)

> INSERT INTO counts (idno,

ncourses)

SELECT idno, COUNT(*) AS

ncourses

FROM enrolments

GROUP BY idno

5)

SELECT *

FROM counts

WHERE ncourses = (SELECT

MAX(ncourses) FROM counts)

6)

SELECT grade, COUNT(*) AS

num

FROM enrolments

GROUP BY grade

7)

SELECT grade, COUNT(*) AS

num,

ROUND(COUNT()100.0/-

(SELECT COUNT(*) FROM

enrolments),1) AS pct

FROM enrolments

GROUP BY grade

8)

CREATE TABLE patients (
PatientID INTEGER,
FirstName TEXT,

LastName TEXT,
DateOfBirth TEXT,
PRIMARY KEY (PatientID)

)

9)

INSERT INTO patients (Patie-

ntID, FirstName, LastName,

DateOfBirth)

VALUES

(1121, "Richard", "Arnold", "-

1/1/1965"),

Week 6 | Subquery (cont)

> (2155, "Ella", "Li", "6/7/1999"),
(2338, "Gemma", "Watson", "-
18/3/2001")

10) Chaning existing

DROP TABLE IF EXISTS
simple

CREATE TABLE simple

(name TEXT)

INSERT INTO simple (name)
VALUES

('Richard'),

("John'),

('Louise')

We can rename the table
DROP TABLE IF EXISTS
csimple

ALTER TABLE simple RENAME
TO csimple
dbListTables(test_conn)

11)

We can insert further rows using
a query to

INSERT INTO simple

SELECT * FROM csimple
Though we have to be sure that
the column names coming in
from csimple match those in
simple or the INSERT won'’t
work.

We can add a column to an
existing table:

ALTER TABLE simple

ADD COLUMN

first_week INTEGER

UPDATE simple SET first_week
=1 WHERE name = 'Richard'
SELECT * FROM simple

Sponsored by Readable.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://readable.com

Cheatography

Week 6 | Subquery (cont)

>12)

Renaming a column is easy too:
ALTER TABLE simple RENAME
COLUMN first_week to firstweek
13) date n time

DROP TABLE IF EXISTS dates
CREATE TABLE dates
(datestring TEXT)

INSERT INTO dates (datestring)
VALUES

('2020-01-01"),

(1977-12-25")

We can output any format we
like using SELECT and various
conversion functions.

SELECT datestring, strftime("-
%d/%m/%Y", datestring) FROM
dates

Create table | Remove Table |
Create Table n Populate | Use
where to find specific | Group by
| Convert to percentages
Rounded | Create primary key
table so only one key per
person| insert into new table |
renaming |

Week 7 | dyplr n tidyr

library(dplyr)

librar y(t idyr)

1)

Copying and renaming
columns

Copying a data frame in
base R

surf.copy <- surf

By Raygun246

Week 7 | dyplr n tidyr (cont)

> Copying a data frame in dplyr
surf.copy <- rename(surf)

but with the ability to rename
columns as we go

surf.copy <- rename(surf,
Sex=Gender, Highest_Qualifi-
cation=Qualification)

surf[1:2,]

2)

Selecting specific columns

To list just the Age and Income
columns in surf in Base R we go
ageinc <- surf[,c("Age","Inc-
ome")]

ageinc[1:3,]

Age Income

11587

2 40 596

3 38 497

The select() function in dplyr
allows us to go

ageinc <- select(surf, Age,
Income)

ageinc[1:3,]

3)

We can also omit columns,
using the negative sign before
the name

noageinc <- select(surf, -Age, -
Income)

noageinc[1:3,]

4)

Not published yet.

Last updated 16th May, 2024.

Page 4 of 7.

Week 7 | dyplir n tidyr (cont)

> and just like in Base R we can
select columns by specifying
their numeric locations:
surf[1:3, ¢(1,6,7)]

5)

base
surflsurf$Gender=="female" &
surf$lncome>900,]

In dplyr we can use the filter()
function to achieve this
filter(surf, Gender=="female" &
Income>900)

6)

tidyr
surf[surf$Gender=="female" &
surf$lncome>900,]

base
surfiwhich(surf$Gender=="fem-
ale" & surf$Income>900),]

7) near certain tolerance
filter(starwars, near(height, 170,
tol=5))

8)

base

Reordering a data frame

We may want to reorder the
rows of a data set by one more
more variables. In base R the
order() command allows us to to
this.

Here are the male high earners:
mhe <- filter(surf, Income>1200,
Gender=="male")

mhe

Week 7 | dyplr n tidyr (cont)

> sort(mhe$Age)
order(mhe$Age)
tidy
arrange(mhe, Age)
two or more variables
mhe[order(mhe$Qualification,
mhe$Age),]
9)
Creating new columns
In Base R we can create new
columns by simply referring to a
name that does not yet exist
mhe$AgeSquared <-
mhe$Age’2
In dplyr we use the mutate()
function - and we can create
multiple new columns in one
step:
mhe <- mutate(mhe, N=nrow-
(mhe), AgeSquared=Age2'
AgeCubed=Age3)
mhe
10)
subsurf <- surf %>%
select(-X) %>%
rename(Sex=Gender)
%>%
filter(Qualification%in%-
c("vocational","degre")) %>%
mutate(AgeSquared=-
Age2)
In this chain of piped substatem-
ents, the pipe sends the output
of each substatement to be the
first argument of the function in
the following substatement. We
only specify the second and
subsequent arguments.

Sponsored by Readable.com

Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://readable.com

Cheatography

Week 7 | dyplr n tidyr (cont)
>11)

Now convert it to a tibble:
mtcars <- as_tibble(mtcars)

We can convert a tibble back to
a standard data frame with
as.data.frame()

mtcars <- as.data.frame(mtcars)

Week 7 | Extra

1)Full join
Keep all entries from A
and B

(i.e., keep entries in

that do not have a
match in B
, and keep entries in B
that do not have a
match in A
) o
merge (A, B, all = TRUE,
)

merge (A, B, all.x =
TRUE, all.y = TRUE, ...)
full j oin(A, B, by =
d€l, ooo)

Entries in A

that do not have
matches in B

will have NAs in fields
from B

, and vice versa.
merge (stu dents,
enrolm ents, by=" id",
all=TRUE)

2)

In base R we can use
reshape ()

reshap e(f ail ure -

_data,

Week 7 | Extra (cont)

> idvar="Course",
varying=c("D","E","Withdra-
w"),
times=c("D","E","Withdr-
aw"),
timevar="Result",
v.names=c("Percentage"),
direction="long")
We will do this using the pivot_-
longer function, from the tidyr

package:
library(tidyr)
failure_long <- pivot_longer(fa-
ilure_data,

cols =¢(D, E,
Withdraw),

names_to = "-
Result",

values_to = "-

Percentage")
failure_long <- arrange(failure-
_long, Course)
kable(failure_long)
3)
Transforming Data From Long to
Wide Format
reshape(as.data.frame(gdp_|I-
ong_2000s),
timevar="year",
v.names="gdpPercap",
direction="wide",
idvar="country")
gdp_wide <- pivot_wider(gdp_lo-
ng_2000s, names_from = year,
values_from = gdpPercap)
kable(gdp_wide)

Week 8 | GGplot

1)
Bar charts for catego -
rical variables
barplo t(t abl e(r ugb -
y$p osi tion), xlab="",
ylab="C oun t", las=2)
librar y(g gplot2)
Two ways to produce
exactly the same bar
chart of player
position.
ggplot (rugby, aes(x =
position)) +

geo m _bar ()
FLIP

ggplot (rugby) +

geo m b ar(aes(x
position)) +

coo rd_ flip()
LABELS n THEME

ggplot (rugby) +

geo m b ar(aes(x

position, y = (..cou -
nt..) / sum(..c ou -
BEoo)))

labs(x = " Pos iti -
on", y =" Pro por tio -
n", title= " Dis tri -

butions over positi -
ons ") +
the me(axi s.title
= elemen t t ext (si -
ze=20))
2)
BOXPLOT
ggplot (rugby) +
geo m_b oxp lot -
(aes(x = weight kg)) +
lab s(x ="Weight
(kg) ") +
coo rd flip()
3)
HISTOGRAM

ggplot (rugby) +

Week 8 | GGplot (cont)

> geom_histogram(aes(x =
weight_kg, y = ..density..),

binwidth = 5) +

labs(x = "Weight (kg)", y = "-
Density")
4)

Frequency polygons and density
plots for numeric variables
ggplot(rugby) +
geom_fregpoly(aes(x =
weight_kg, y = ..density..),
binwidth = 5) +
labs(x = "Weight (kg)", y = "-
Density")
ggplot(rugby, aes(x = weight_kg,
y = ..density..)) +
geom_histogram(binwidth = 5)
+
labs(x = "Weight (kg)", y = "-
Density") +
geom_fregpoly(binwidth = 5)
ggplot(rugby) +
geom_fregpoly(aes(x = weight-
_kg), stat = "density")
5)
SCATTER TWO VARIABLES
plot.settings <- ggplot(rugby,
aes(x = height_cm, y = weight-
_kg)) +
labs(x = "Height (cm)", y = "-
Weight (kg)") +
theme_classic()
6)
HEXSCATTER
library(hexbin)
plot.settings +

By Raygun246 Not published yet.
Last updated 16th May, 2024.

Page 5 of 7.

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://readable.com

Cheatography

Week 8 | GGplot (cont)

>7)
our.scatterplot <- plot.settings +
geom_point(p-
osition = "jitter") # Scatterplot of
weight versus height.
our.scatterplot +
geom_smooth(method = "Im")
8)
BUNCH OF GRAPHS
ggplot(rugby) +
geom_point(aes(x = height_cm,
y = weight_kg), position = "jit-
ter") +
facet_wrap(~position)
9)
Sidebyside box
ggplot(rugby) +
geom_boxplot(aes(x = position,
y = weight_kg)) +
10)
Summary of Plot Types
Plot type geom type aes options
Additional arguments
Bar chart geom_bar x, vy, fill
position = "fill", position = "dod-
ge", stat = "identity"
Histogram geom_histogram x
binwidth, bins
Boxplot geom_boxplot x, y
boxplot()
Scatterplot geom_point x, y,
colour, size, shape position = "-
jitter"
Line of best fit overlay, line plot
geom_line x, y, colour, linetype
size

By Raygun246

Week 8 | GGplot (cont)

> Hexagonally binned scatterplot
geom_hex X, y binwidth, bins
Bar/column chart geom_col x, y,
fill barplot()

labs(x="Position", y="Weight
(kg)")

geom_hex()
plot.settings + geom_point()

Not published yet.

Last updated 16th May, 2024.

Page 6 of 7.

Sponsored by Readable.com
Measure your website readability!

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://readable.com

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 1
	Week 5
	Week 5 | Useful Commands
	Week 5 | Rolling
	Week 5 | Basic Operations
	Week 6 | Using SQL select
	Week 5 | Read + Delete Table
	Week 5 | Rolling

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 2
	Week 6 | Creating Tables Manipu­lation
	Week 6 | Where Clause
	Week 6 | Joins

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 3
	Week 6 | Subquery

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 4
	Week 7 | dyplr n tidyr

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 5
	Week 8 | GGplot
	Week 7 | Extra

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 6

