
DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 5Week 5

#1)
library(DBI)
library(RSQLite)
2)
test_conn <- dbConn‐
ect(RSQLite::SQ‐
Lite(),
"test_db.sqlite")
3)
file.info("test_‐
db.sqlite")
4)
test_conn

Needed Library's | Create
Connection Special File | List
Files in Folder | Test connection
find where it exists

Week 5 | Basic OperationsWeek 5 | Basic Operations

Week 5 | Useful CommandsWeek 5 | Useful Commands

This are the main ones
we’ll need.
Connections
dbConnect()
dbDisconnect()
dbCanConnect()
Finding out what is in
the database
dbListTables()
dbExistsTable()
dbListFields()
Fetching data from and
Writing data to the
database
dbReadTable()
dbWriteTable() (note
overwrite and append
options)
dbRemoveTable()
dbGetQuery()
Controlling queries and
changes to the database
dbExecute()
dbBegin()
dbCommit()
dbRollback()
dbFetch()

Week 5 | Read + Delete TableWeek 5 | Read + Delete Table

1)
test_conn <- dbConn‐
ect(RSQLite::SQ‐
Lite(), "test_db.s‐
qlite")
dbReadTable(tes‐
t_conn, "vicschool‐
s")
2)
vv <- dbReadTable(‐
test_conn, "vicsch‐
ools")
vv
3)
dbListTables(test_‐
conn)

Week 5 | Read + Delete TableWeek 5 | Read + Delete Table
(cont)(cont)

> dbRemoveTable(test_conn, "‐
vicschools")

Reading | Storing | Deleting

Week 5 | RollingWeek 5 | Rolling

By default when SQLite
starts it is in auto-
commit mode:
so that all changes that
are requested are
automatically made
permanent.
To make a set of
tenative changes enter
commit mode using
the dbBegin() command:
dbBegin(test_conn)
Then make a series of
changes to the database.
If you want to keep the
changes go:
dbCommit(test_conn)
or if you want to
abandon the changes go:
dbRollback(test‐
_conn)
This abandons all
changes made after the
dbBegin() statement.
After either of these
two calls (dbCommit or
dbRollback)
the database is back in
auto-commit mode

Week 5 | RollingWeek 5 | Rolling

By default when SQLite
starts it is in auto-
commit mode:
so that all changes that
are requested are
automatically made
permanent.

Week 5 | Rolling (cont)Week 5 | Rolling (cont)

> To make a set of tenative
changes enter commit mode
using
the dbBegin() command:
dbBegin(test_conn)
Then make a series of changes
to the database.
If you want to keep the changes
go:
dbCommit(test_conn)
or if you want to abandon the
changes go:
dbRollback(test_conn)
This abandons all changes
made after the dbBegin()
statement.
After either of these two calls
(dbCommit or dbRollback)
the database is back in auto-c‐
ommit mode

Week 6 | Using SQL selectWeek 6 | Using SQL select

1)
library(DBI)
library(RSQLite)
test_conn <- dbConn‐
ect(RSQLite::SQ‐
Lite(), "test_db.s‐
qlite")
surf <- read.csv("‐
surf.csv")
dbWriteTable(test_‐
conn, "surfshort",
surf[1:10,1:8],
overwrite=TRUE)
2)
dbGetQuery(test‐
_conn, "SELECT * FROM
surfshort")
ss <- dbGetQuery(t‐
est_conn, "SELECT *
FROM surfshort")
3)

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot

1)
dbListTables(test_‐
conn)
2)
schools <- data.fram‐
e(School=
 ‐
 ‐
c("Mathematics and
Statistics"),
 ‐
 ‐
Code=c("SMS","SGEE‐
S"),
 ‐
 ‐
Faculty=c("Scien‐
ce","Science")
 ‐
)
schools
3)
dbWriteTable(test_‐
conn, "vicschools",
schools, overwrite‐
=TRUE)
dbListTables(test_‐
conn)
4)
file.info("test_‐
db.sqlite")
5)
dbDisconnect(test_‐
conn)

Test whats in database | Define
Dataframe in R | Copy into new
database table called vicschools
| Check db file size | Need to
disconnect at end of session

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 1 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/raygun246/
https://apollopad.com

DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 6 | Using SQL selectWeek 6 | Using SQL select
(cont)(cont)

> ̀ {sql connection=test_conn}
SELECT * FROM surfshort
`
4)
SELECT marital, gender FROM
surfshort

Create n start table | Select n
show table n save to var | What
tp write in markdown | select
specific column

Week 6 | Where ClauseWeek 6 | Where Clause

1)
SELECT *
FROM surfshort
WHERE Marital="never"
2)
SELECT *
FROM surfshort
WHERE Marital<>"nev‐
er"
3)
SELECT * FROM surfshort
WHERE Marital="never"
4)
SELECT Age, Gender
FROM surfshort
WHERE Marital="never"
AND Qualificatio‐
n="school"
5)
SELECT Age, Gender,
Qualification,
Marital, Marital,
Qualification
FROM surfshort
WHERE (Marital="nev‐
er" AND Qualificatio‐
n="school") OR
Marital="married"
6)

Week 6 | Where Clause (cont)Week 6 | Where Clause (cont)

> SELECT Age, Gender AS
Sex, Qualification, Marital,
Marital AS MaritalStatus, Qualif‐
ication
FROM surfshort
WHERE (Marital="never" AND
Qualification="school") OR
Marital="married"
7)
Common operators we want to
use in WHERE clause are:
AND
OR
NOT
and we make comparisons with
=, <>
>, >=, <, <=
LIKE
IN
IS NULL, IS NOT NULL
Here NULL is the way SQL
refers to missing data.
8)
SELECT Marital, Age, Qualif‐
ication
FROM surfshort
WHERE Age IN (34,35,36,45)
ORDER BY Age DESC, Qualif‐
ication

Select using Conditions | Select
not equal | select equal |
multiple condition | Mulitple
condition v2 pro | rename based
on query | Common operators |
Order by Ascending

Week 6 | Creating TablesWeek 6 | Creating Tables
ManipulationManipulation

1)
CREATE TABLE lecturers (
 first_name TEXT,
 last_name TEXT,
 start_week INTEGER,
 end_week INTEGER,
 school TEXT
)
2)
SELECT * FROM lecturers
3)
INSERT INTO lecturers
(first_name, last_name,
school)
VALUES
("Richard","Arn‐
old","SMS"),
("Louise","McMilla‐
n","SMS"),
("Ryan","Admira‐
al","SMS"),
("John","Haywoo‐
d","SMS")
4)
SELECT * FROM lecturers
5)
UPDATE lecturers
SET start_week=1,
end_week=6
WHERE first_name = "‐
Richard"
6)
UPDATE lecturers SET
school="Mathematics
and Statistics"
7)
DELETE FROM lecturers
WHERE first_name="J‐
ohn"
8)
Delete Bunch

Week 6 | Creating TablesWeek 6 | Creating Tables
Manipulation (cont)Manipulation (cont)

> 9)
DROP TABLE lecturers
10)
SELECT Marital, COUNT(*)
FROM SURF
GROUP BY Marital
SELECT Marital, COUNT(*) AS
Number, MIN(Age) as AgeMin,
MAX(Age) as AgeMax
FROM SURF
WHERE Gender = "female"
GROUP BY Marital

Create table | Insert Data |
Insert Data V2 | Checking |
Modify | Mulitple Rows at once |
Delete | Delete bunch | Delete
Table | Counts

Week 6 | JoinsWeek 6 | Joins

1)
SELECT *
FROM students LEFT JOIN
enrolments
ON students.idno=enrolme‐
nts.idno
ORDER BY idno
2)
SELECT *
FROM enrolments INNER JOIN
students
ON students.idno=enrolme‐
nts.idno
ORDER BY idno
3)
SELECT students.idno, enrolm‐
ents.idno, "first.name", "last.n‐
ame", course, grade
FROM students LEFT JOIN
enrolments

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 2 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://apollopad.com

DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 6 | Joins (cont)Week 6 | Joins (cont)

ON students.idno=enrolme‐
nts.idno
UNION
SELECT students.idno, enrolm‐
ents.idno, "first.name", "last.n‐
ame", course, grade
FROM enrolments LEFT JOIN
students
ON students.idno=enrolme‐
nts.idno
ORDER BY students.idno
4)
xx <- data.frame(colour=c("R‐
ed","Green","Blue"),
height=c("Tall","Tall","Short"))
yy <- data.frame(width=c("wi‐
de","narrow"))
dbWriteTable(test_conn, "xx",
xx, overwrite=TRUE)
dbWriteTable(test_conn, "yy",
yy, overwrite=TRUE)
5)
merge(xx, yy)
merge(students, enrolments,
by="idno")
6)
Thus when combining two
datasets with merge():
all=FALSE (the default) keeps
only matching records (inner
join)
all=TRUE keeps all records from
both datasets, whether matching
or not (full outer join)
all.x=TRUE keeps all records
from the first dataset (left join)

Week 6 | Joins (cont)Week 6 | Joins (cont)

all.y=TRUE keeps all records
from the second dataset (right
join)
and
by=NULL does not use a
matching key (cross join)
by="xxx" matches on column
xxx in both tables
by.x="xxx", by.y="zzz" mathches
column xxx in the first table with
column zzz in the second. Thus
if the matching key has different
names in the two tables then the
merge() command allows us to
specify them separately.

Left Join | Inner Join | Full outer
join | Cross Join | Merging in R |
Sussy

Week 6 | SubqueryWeek 6 | Subquery

1)
We can use a subquery to
define and populate a
table
CREATE TABLE counts
AS
SELECT idno, COUNT(*) AS
ncourses
FROM enrolments
GROUP BY idno
2)
dbRemoveTable(test‐
_conn, "counts")
3)
CREATE TABLE counts
(idno INTEGER,
 ncourses INTEGER)
4)

Week 6 | Subquery (cont)Week 6 | Subquery (cont)

> INSERT INTO counts (idno,
ncourses)
SELECT idno, COUNT(*) AS
ncourses
FROM enrolments
GROUP BY idno
5)
SELECT *
FROM counts
WHERE ncourses = (SELECT
MAX(ncourses) FROM counts)
6)
SELECT grade, COUNT(*) AS
num
FROM enrolments
GROUP BY grade
7)
SELECT grade, COUNT(*) AS
num,
 ROUND(COUNT()100.0/‐
(SELECT COUNT(*) FROM
enrolments),1) AS pct
FROM enrolments
GROUP BY grade
8)
CREATE TABLE patients (
 PatientID INTEGER,
 FirstName TEXT,
 LastName TEXT,
 DateOfBirth TEXT,
 PRIMARY KEY(PatientID)
)
9)
INSERT INTO patients (Patie‐
ntID, FirstName, LastName,
DateOfBirth)
VALUES
(1121, "Richard", "Arnold", "‐
1/1/1965"),

Week 6 | Subquery (cont)Week 6 | Subquery (cont)

> (2155, "Ella", "Li", "6/7/1999"),
(2338, "Gemma", "Watson", "‐
18/3/2001")
10) Chaning existing
DROP TABLE IF EXISTS
simple
CREATE TABLE simple
(name TEXT)
INSERT INTO simple (name)
VALUES
('Richard'),
('John'),
('Louise')
We can rename the table
DROP TABLE IF EXISTS
csimple
ALTER TABLE simple RENAME
TO csimple
dbListTables(test_conn)
11)
We can insert further rows using
a query to
INSERT INTO simple
SELECT * FROM csimple
Though we have to be sure that
the column names coming in
from csimple match those in
simple or the INSERT won’t
work.
We can add a column to an
existing table:
ALTER TABLE simple
ADD COLUMN
first_week INTEGER
UPDATE simple SET first_week
= 1 WHERE name = 'Richard'
SELECT * FROM simple

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 3 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://apollopad.com

DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 6 | Subquery (cont)Week 6 | Subquery (cont)

> 12)
Renaming a column is easy too:
ALTER TABLE simple RENAME
COLUMN first_week to firstweek
13) date n time
DROP TABLE IF EXISTS dates
CREATE TABLE dates
(datestring TEXT)
INSERT INTO dates (datestring)
VALUES
('2020-01-01'),
('1977-12-25')
We can output any format we
like using SELECT and various
conversion functions.
SELECT datestring, strftime("‐
%d/%m/%Y", datestring) FROM
dates

Create table | Remove Table |
Create Table n Populate | Use
where to find specific | Group by
| Convert to percentages
Rounded | Create primary key
table so only one key per
person| insert into new table |
renaming |

Week 7 | dyplr n tidyrWeek 7 | dyplr n tidyr

library(dplyr)
library(tidyr)
1)
Copying and renaming
columns
Copying a data frame in
base R
surf.copy <- surf

Week 7 | dyplr n tidyr (cont)Week 7 | dyplr n tidyr (cont)

> Copying a data frame in dplyr
surf.copy <- rename(surf)
but with the ability to rename
columns as we go
surf.copy <- rename(surf,
Sex=Gender, Highest_Qualifi‐
cation=Qualification)
surf[1:2,]
2)
Selecting specific columns
To list just the Age and Income
columns in surf in Base R we go
ageinc <- surf[,c("Age","Inc‐
ome")]
ageinc[1:3,]
Age Income
1 15 87
2 40 596
3 38 497
The select() function in dplyr
allows us to go
ageinc <- select(surf, Age,
Income)
ageinc[1:3,]
3)
We can also omit columns,
using the negative sign before
the name
noageinc <- select(surf, -Age, -
Income)
noageinc[1:3,]
4)

Week 7 | dyplr n tidyr (cont)Week 7 | dyplr n tidyr (cont)

> and just like in Base R we can
select columns by specifying
their numeric locations:
surf[1:3, c(1,6,7)]
5)
base
surf[surf$Gender=="female" &
surf$Income>900,]
In dplyr we can use the filter()
function to achieve this
filter(surf, Gender=="female" &
Income>900)
6)
tidyr
surf[surf$Gender=="female" &
surf$Income>900,]
base
surf[which(surf$Gender=="fem‐
ale" & surf$Income>900),]
7) near certain tolerance
filter(starwars, near(height, 170,
tol=5))
8)
base
Reordering a data frame
We may want to reorder the
rows of a data set by one more
more variables. In base R the
order() command allows us to to
this.
Here are the male high earners:
mhe <- filter(surf, Income>1200,
Gender=="male")
mhe

Week 7 | dyplr n tidyr (cont)Week 7 | dyplr n tidyr (cont)

> sort(mhe$Age)
order(mhe$Age)
tidy
arrange(mhe, Age)
two or more variables
mhe[order(mhe$Qualification,
mhe$Age),]
9)
Creating new columns
In Base R we can create new
columns by simply referring to a
name that does not yet exist
mhe$AgeSquared <-
mhe$Age^2
In dplyr we use the mutate()
function - and we can create
multiple new columns in one
step:
mhe <- mutate(mhe, N=nrow‐
(mhe), AgeSquared=Age

3)
mhe
10)
subsurf <- surf %>%
 select(-X) %>%
 rename(Sex=Gender)
%>%
 filter(Qualification%in%‐
c("vocational","degre")) %>%
 mutate(AgeSquared=‐
Age^2)
In this chain of piped substatem‐
ents, the pipe sends the output
of each substatement to be the
first argument of the function in
the following substatement. We
only specify the second and
subsequent arguments.

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 4 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

2,

AgeCubed=Age

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://apollopad.com

DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 7 | dyplr n tidyr (cont)Week 7 | dyplr n tidyr (cont)

> 11)
Now convert it to a tibble:
mtcars <- as_tibble(mtcars)
We can convert a tibble back to
a standard data frame with
as.data.frame()
mtcars <- as.data.frame(mtcars)

Week 7 | ExtraWeek 7 | Extra

1)Full join
Keep all entries from A
 and B
 (i.e., keep entries in
A
 that do not have a
match in B
, and keep entries in B
 that do not have a
match in A
).
merge(A, B, all = TRUE,
...)
merge(A, B, all.x =
TRUE, all.y = TRUE, ...)
full_join(A, B, by =
id, ...)
Entries in A
 that do not have
matches in B
 will have NAs in fields
from B
, and vice versa.
merge(students,
enrolments, by="id",
all=TRUE)
2)
In base R we can use
reshape()
reshape(failure‐
_data,

Week 7 | Extra (cont)Week 7 | Extra (cont)

> idvar="Course",
 varying=c("D","E","Withdra‐
w"),
 times=c("D","E","Withdr‐
aw"),
 timevar="Result",
 v.names=c("Percentage"),
 direction="long")
We will do this using the pivot_‐
longer function, from the tidyr
package:
library(tidyr)
failure_long <- pivot_longer(fa‐
ilure_data,
 cols = c(D, E,
Withdraw),
 names_to = "‐
Result",
 values_to = "‐
Percentage")
failure_long <- arrange(failure‐
_long, Course)
kable(failure_long)
3)
Transforming Data From Long to
Wide Format
reshape(as.data.frame(gdp_l‐
ong_2000s),
 timevar="year",
 v.names="gdpPercap",
 direction="wide",
 idvar="country")
gdp_wide <- pivot_wider(gdp_lo‐
ng_2000s, names_from = year,
values_from = gdpPercap)
kable(gdp_wide)

Week 8 | GGplotWeek 8 | GGplot

1)
Bar charts for catego‐
rical variables
barplot(table(rugb‐
y$position), xlab="",
ylab="Count", las=2)
library(ggplot2)
Two ways to produce
exactly the same bar
chart of player
position.
ggplot(rugby, aes(x =
position)) +
 geom_bar()
FLIP
ggplot(rugby) +
 geom_bar(aes(x =
position)) +
 coord_flip()
LABELS n THEME
ggplot(rugby) +
 geom_bar(aes(x =
position, y = (..cou‐
nt..) / sum(..cou‐
nt..))) +
 labs(x = "Positi‐
on", y = "Proportio‐
n", title="Distri‐
butions over positi‐
ons") +
 theme(axis.title
= element_text(si‐
ze=20))
2)
BOXPLOT
ggplot(rugby) +
 geom_boxplot‐
(aes(x = weight_kg)) +
 labs(x="Weight
(kg)") +
 coord_flip()
3)
HISTOGRAM
ggplot(rugby) +

Week 8 | GGplot (cont)Week 8 | GGplot (cont)

> geom_histogram(aes(x =
weight_kg, y = ..density..),
binwidth = 5) +
 labs(x = "Weight (kg)", y = "‐
Density")
4)
Frequency polygons and density
plots for numeric variables
ggplot(rugby) +
 geom_freqpoly(aes(x =
weight_kg, y = ..density..),
binwidth = 5) +
 labs(x = "Weight (kg)", y = "‐
Density")
ggplot(rugby, aes(x = weight_kg,
y = ..density..)) +
 geom_histogram(binwidth = 5)
+
 labs(x = "Weight (kg)", y = "‐
Density") +
 geom_freqpoly(binwidth = 5)
ggplot(rugby) +
 geom_freqpoly(aes(x = weight‐
_kg), stat = "density")
5)
SCATTER TWO VARIABLES
plot.settings <- ggplot(rugby,
aes(x = height_cm, y = weight‐
_kg)) +
 labs(x = "Height (cm)", y = "‐
Weight (kg)") +
 theme_classic()
6)
HEXSCATTER
library(hexbin)
plot.settings +

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 5 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://apollopad.com

DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet
by Raygun246 via cheatography.com/203728/cs/43414/

Week 8 | GGplot (cont)Week 8 | GGplot (cont)

> 7)
our.scatterplot <- plot.settings +
 geom_point(p‐
osition = "jitter") # Scatterplot of
weight versus height.
our.scatterplot +
 geom_smooth(method = "lm")
8)
BUNCH OF GRAPHS
ggplot(rugby) +
 geom_point(aes(x = height_cm,
y = weight_kg), position = "jit‐
ter") +
 facet_wrap(~position)
9)
Sidebyside box
ggplot(rugby) +
 geom_boxplot(aes(x = position,
y = weight_kg)) +
10)
Summary of Plot Types
Plot type geom type aes options
Additional arguments
Bar chart geom_bar x, y, fill
position = "fill", position = "dod‐
ge", stat = "identity"
Histogram geom_histogram x
binwidth, bins
Boxplot geom_boxplot x, y
boxplot()
Scatterplot geom_point x, y,
colour, size, shape position = "‐
jitter"
Line of best fit overlay, line plot
geom_line x, y, colour, linetype
size

Week 8 | GGplot (cont)Week 8 | GGplot (cont)

> Hexagonally binned scatterplot
geom_hex x, y binwidth, bins
Bar/column chart geom_col x, y,
fill barplot()
 labs(x="Position", y="Weight
(kg)")
 geom_hex()
plot.settings + geom_point()

By Raygun246Raygun246
cheatography.com/raygun246/

Not published yet.
Last updated 16th May, 2024.
Page 6 of 7.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/raygun246/
http://www.cheatography.com/raygun246/cheat-sheets/data-202-r-studio-sql-wrangling-ggplot
http://www.cheatography.com/raygun246/
https://apollopad.com

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 1
	Week 5
	Week 5 | Useful Commands
	Week 5 | Rolling
	Week 5 | Basic Operations
	Week 6 | Using SQL select
	Week 5 | Read + Delete Table
	Week 5 | Rolling

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 2
	Week 6 | Creating Tables Manipulation
	Week 6 | Where Clause
	Week 6 | Joins

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 3
	Week 6 | Subquery

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 4
	Week 7 | dyplr n tidyr

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 5
	Week 8 | GGplot
	Week 7 | Extra

	DATA 202 | R Studio | SQL + Wrangling + GGplot Cheat Sheet - Page 6

