Cheatography

Program Design

Part of design phase of SDLC

Determine what code modules are required

Determine how code modules will work
together to form the program Develop specific
instructions for development team on how code
modules should be written
Techniques in program design Structure chart

Program specifications
Designing Programs Planning before coding
generally improves the development
process Never begin writing code without
having a
complete understanding of what code must
do Mitigates risk of:

Inefficient programs Incompatible programs
Programs missing key functionality--- Program
design goal Program design that is modular
and flexible
Top-down modular approach to
design Determine major program components
first,then detailed sub-components supporting
them Eases understanding and
communication of design Process of program
decomposition
Designing Programs Modular design
advantages Code that is easier to understand
Code that is reusable Code that has less
redundancy Code that is easier to
maintain Program modules should be
decomposed until they perform a single
function---Program design document Prepared
at completion of program design Components
Program structure chart Program
specificationsStructure Chart Hierarchical, high-
level depiction of all
modular components of an
program Emphasizes structure and reusability
Modules should perform a single
function Details sequence, selection, and
iteration of modules--- Structure Chart
Syntax Modules Control module Higher-level
module that contains logic for calling and
controlling sub-component
modules Subordinate module Low-level
module contains logic for performing

SAD final exam
by ravikiran via cheatography.com/21942/cs/4369/

Program Design (cont)

specific function when called by the control
module Library module Generic module used
by multiple control module. Loops Iteration —
execution of subordinate modules repeated
Conditional line Selection — subordinate
execution based on condition.Couples

Shows information passed between modules
Data couples Passing data

Control couples Passing parameters, flags,
system messages---Building a structure chart --
Types of processes Afferent Provide inputs
into the system Central Perform critical
functions in the system operation Efferent
Produce outputs of the system---Module
structures 1.Transaction structure Control
module calls subordinate modules based upon
a condition or selection that handle specific
transactions Correspond to higher levels of
DFD and structure chart 2.Transform Structure
Control module calls several subordinate
modules in sequence to create a specific
output Forms a process to transform inputs
into an output Correspond to lower levels of
DFD and structure char--Program design
guidelines 1.High Cohesion-- Modules should
perform a single function efficiently Modules
easy to understand and develop 2.Loose
coupling. Modules are independent from one
another Data passed between modules is
limited Modules easy to modify without
impacting others 3.High fan-in

Multiple control modules should call a single
subordinate module Sign of proper module
reuse 4.Low fan-out Single control module has
few subordinate modules Maximum of seven
subordinate modules per control Control
modules are not overly complex. Program
specification -- Explicit instructions for
development team on how code modules
should be written Develop program
specification for each module in structure
chart. Program information Events that trigger
functionality in the program Inputs and outputs
Structured English and pseudocode.

System Acquisitions and Arch

System acquisition strategies Approaches to
system acquisition Influences on acquisition
strategy Selecting an acquisition strategy---
Architecture design

Elements of an architecture design Creating
an architecture design--Approaches to System
Acquisition Three ways to approach creation of
a system Custom development Packaged
software Outsourcing--Systems Acquisition
and Architecture System acquisition
strategies Approaches to system acquisition
Influences on acquisition strategy Selecting an
acquisition strategy Architecture
design Elements of an architecture design
Creating an architecture design---Approaches
to System Acquisition Three ways to approach
creation of a system1.Custom development
2.Packaged software: 3.Outsourcing---
Influences on Acquisition Strategy 1.Business
need2.Time frame3.Inhouse experience---
Selecting an Acquisition Strategy. Alternative
matrix Evaluate pros and cons of design
alternatives Weight criteria according to
importance Avoid subjective bias toward
preferences

Independent ratings by each analyst-
-Architecture Design Information systems are
distributed Architecture design determines how
system
will be distributed across computers Non-
functional requirements play key role---
Virtualization Server virtualization Partitioning
physical server into several
independent virtual servers Reduced hardware
requirements Storage virtualization Combining
multiple storage devices into single
virtual storage space Improved storage and
retrieval speed--Creating an Architecture
Design Non-functional requirements used to
guide
architecture design decisions Operational
requirements Performance requirements
Security requirements Cultural and political
requirements

By ravikiran

cheatography.com/ravikiran/

Published 10th June, 2015.
Last updated 10th June, 2015.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com


http://www.cheatography.com/
http://www.cheatography.com/ravikiran/
http://www.cheatography.com/ravikiran/cheat-sheets/sad-final-exam
http://www.cheatography.com/ravikiran/
https://readability-score.com

Cheatography

Implementation

Implementation Construction of the new
system Thorough job in analysis and design
phases lead to a successful implementation of
the system

Developing the system’s software Largest
component of SDLC in time and cost Generally
presents the fewest problems Design and
execution of system testing Develop system
documentation---Managing the Programming
Process

Coordinating programming activities Regular
meetings Programming standards and
guidelines Software development areas
Development, testing, and production Code
management systems Version control
Program log Program check-in / check-out--
-Testing Writing programs is fun Testing and
documentation are not Professional
organizations spend more time

and money in testing than writing

programs Risk associated with system failure is
severe Testing is insurance; expenditure
justified Testing often performed by systems
analyst Four types of tests Unit, integration,
system, and acceptance tests Most errors
found in integration and system testing---
Developing Documentation System
documentation Created in analysis and design
phases

Enable maintenance of system after
installation User documentation

User manuals, training manuals, help systems
Designed to assist users of the system Good
documentation takes time Allocate resources
to documentation in project plan---
Organizational Transition People are generally
resistant to change Business processes and
computer systems become habitual, people
become comfortable Implementation of a new
system challenging Managing organizational
change Unfreeze, transition, refreeze Prior
SDLC phases help users prepare for change
Migration plan guides the transition
Post-implementation establishes new system--
Migration plan.

SAD final exam
by ravikiran via cheatography.com/21942/cs/4369/

Implementation (cont)

Decisions, plans, procedures guiding transition
Conversion strategy Business contingency
plan-- Conversion strategy Conversion style
Defines how abruptly the new system is
introduced Conversion locations Defines what
portion of the organization
transitions Conversion style Direct conversion
Instant replacement of the old system with the
new High risk Any problems have dramatic
impact on organization---Business
contingency planning
Withstand impact of problems with new
system Proper project management and
migration planning helps to ensure smooth
transition Parallel conversion provides a
fallback Plan for worst-case scenario — no
system--Post-Implementation
Activities Institutionalize use of new
system Establish as normal way of doing
business Refreeze organization after
successful transition Three key post-
implementation activities System support
Maintenance Project assessment System
support Providing assistance to users after.
implementation System transferred to
operations group Provide online support,
guides, FAQs Help desk Level 1 and 2
support staff---System maintenance Refining
system after implementation to ensure
it continues to meet business
needs Substantially more resources devoted to
system maintenance than initial
development Change request Changes
performed through smaller SDLC cycle Bug
fixes — highest priority Enhancements —
second priority Project
assessment Organizational learning
Understand successes and failures in system
development activities Project team review
Focuses on way project team performed
activities System review Focuses on extent
system provided benefits promised.

By ravikiran

cheatography.com/ravikiran/

Published 10th June, 2015.
Last updated 10th June, 2015.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com


http://www.cheatography.com/
http://www.cheatography.com/ravikiran/
http://www.cheatography.com/ravikiran/cheat-sheets/sad-final-exam
http://www.cheatography.com/ravikiran/
https://readability-score.com

	SAD final exam - Page 1
	Program Design
	System Acquis­itions and Arch

	SAD final exam - Page 2
	Implem­ent­ation


