
Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

IntroductionIntroduction

Javascript was designed to run only in
browsers so every browser uses a
Javascript Engine. Node combines C++ and
JS so JS can run outside of browsers.

ECMASCRIPT, Specification, defines JS
standards.

The Javascript Console can be found in
Chrome > Inspect > Console.

Just like browsers, Node includes the v8
JavaScript engine, so it can read and
execute JavaScript scripts

Operator's precedenceOperator's precedence

The precedence is as follows: multiplication
*, sum +

Bitwise operatorsBitwise operators

A little less practical.

1 = 00000001, 2 = 00000010

Bitwise are similar to Logical operators, but
they operate on the singular bits of a
number: each bit/8 is compared.

Bitwise OR consol‐
e.log(1 |
2); //3

With OR, each individual bit is
compared, if any of them is 1,
the result is zero, like:

00000001
//1

 00000010
//2

 00000011
//(1 | 2)

Bitwise AND consol‐
e.log(1 &
2); //

With AND, each individual bit
is compared, if both bits are 1,
the result is one, otherwise 0:

00000011
//(1 & 2)

Logical operators with non-booleansLogical operators with non-booleans

If the operand/'condition' is not 'true' or
'false'(boolean) JS will try to interpret it as
'truey' or 'falsey'.

"Falsey"
values:

undefined, null, 0, false, '', "",
NaN

"Truthy"
values:

anything else - Strings,
natural numbers

Logical operatorsLogical operators

Logical
AND
(&&)

Returns
'true' if both
operands or
conditions
are 'true'

true && true =>
true; true && false
=> false

Logical
OR (||)

Returns
'true' if one
of the
operands/‐
conditions
are 'true'

true || false =>
true; true || true
=> true; false ||
true => true; false
|| false => false

Logical
NOT
(!)

Will turn the
operand
/condition
into false if
true, true if
false

let happy = !sad

Ternary operatorsTernary operators

// Ternary operators
// If a costumer has over 10
points they're a GOLD costumer,
otherwise they're silver.
let points = 110;
// Condition (produces boolean),
if true, set to 'gold',
otherwise, 'silver'
let customerType = points > 100
? 'gold' : 'silver';
console.log(customerType);
There's a better way to shorten
this if the condition's result
is true or false:

Ternary operators (cont)Ternary operators (cont)

> return width > height;
instead of : return width > height ? true :
false;

These conditions use booleans to return a
value depending on the boolean type.

OperatorsOperators

Operators are used alongside variables to
create expressions. With these we can
create logic and algorithms.

In JavaScript we have Arithmetic,
Assigment, Comparison, Bitwise and
Logical Operators.

Arithmetic

Assignment

Arithmetic OperatorsArithmetic Operators

let x = 10;
let y = 3;
console.log(x + y);
console.log(x - y);
console.log(x * y);
console.log(x / y);
console.log(x % y);
console.log(x ** y);
//// Increment and Decrement
Operators
// 10
console.log(x);
// 11+1 (operation applied
first)
console.log(++x);
// 11+1 (operation applied
later)
console.log(x++);

Used for performing calculations, like
mathematics. Usually variables with
numeric values are used (operands) to
produce new values (expression -
something that produces a value.
For increment and decrement operators, if
applied before the variable, the operation
will be performed before the action. If
applied after, after the action is executed.

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 1 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Assignment operatorsAssignment operators

Comparison operatorsComparison operators

// Relational operators
let xx = 1;
console.log(xx > 0);
// true, 1 is bigger than 0
console.log(xx >= 1);
// true, 1 is equal or bigger
than 1
console.log(xx < 1);
// false, 1 is no less than 1
console.log(xx <= 1);
// true, 1 is equal or smaller
to 1
// Equality operators
console.log(xx === 1);
// true, x is the same value and
type as 1
console.log(xx !== 1);
// false, x is no different to 1

We use them to compare the value of a
variable with something else.
The result of an expression that includes a
comparison operator is a boolean (true or
false).

Equality operatorsEquality operators

// Equality operators
console.log(xx === 1);
// true, x is the same value and
type as 1
console.log(xx !== 1);
// false, x is no different to 1
//// Lose equality operators
console.log(xx == y);
//// Strict equality operators
console.log(xx === y);
// true
console.log('1' == 1);
// false
console.log('1' === 1);

Lose equality operators ensure that two
variables share value, Strict equality
operators ensure that two variables share
value and type. Type such as number,
string, etc.

Lose equality will take the first variable's
type and convert the second to that type
automatically when compared.

Boilerplate projectBoilerplate project

To start off, create an HTML document. Set
a <script> tag on the head or body, but best
practice is at the end of the <body> element
because the browser will parse the content
the DOM first.

// This is a comment.

console.log("This is a sequence. It logs this
message from the console.")

<script src="index.js"/>

From the terminal, launch "node index.js" to
run the JavaScript script

From VSCode, run View > Terminal to run
the JavaScript script

Reference typesReference types

Objects A type that holds
properties - when
multiple
properties are
related we can fit
them inside an
Object.

let person =
{}

 Inside an object
tehre's value and
keys:

{ name:
'Mosh', age:
27 }

 Objects can also
be printed

console.log(‐
person);

 Object properties
can be changed.
(Dynamic typing,
remember?)

person.name
= 'Sara'

 person['n‐
ame'] = "‐
Mary"

Arrays A type used to
store other types
in a list-like
manner. Techni‐
cally an Object.

let select‐
edColors =
[];

 let select‐
edColors =
['red', 'blue'];

 Array elements
each have an
index, in this
case: red is 0,
blue is 1. To
access them

selectedC‐
olors[0]; //
red

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 2 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
https://cheatography.com/uploads/raposinha_1712556401_assignment-operators-1.PNG
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Reference types (cont)Reference types (cont)

 Because JavaScript
is a dynamic
language, variables
can be set, added,
deleted at runtime
or any time. And
they can be of any
type

select‐
edColo‐
rs[2] =
'yellow';

 select‐
edColo‐
rs[3] =
8;

 Because Arrays are Objects,
they have their own inherited
properties like indexOf,
length...

Functions A set of statements that
perform a task or calculates a
value

 The variable we
parse into the
function is an
'argument'.

greet('
María');

 If we don't parse a
second variable, it
will print undefined.

greet("‐
Jua‐
na",las‐
tName);

 All functions in JavaScript are
objects, so they have
properties and methods that we
can access using the dot
notation (I.e.: Object.keys

JavaScript is a Dynamic Typing languageJavaScript is a Dynamic Typing language

Primitive variable typesPrimitive variable types

To check a primitive variable type typeoftypeof is
used:
typeof n !== 'number'

Control flowControl flow

- If ... Else

-
Switch
...
Case

switch(case) {

 case 'guest':

 console.log('Guest');

 break;

 case 'moderator':

 console.log('Moderator');

 default:

 console.log('Unknown');

 }

 Note 1: If break is not added, the
condition doesn't skip and case
doesn't work, it just executes the
next statement within the first case
read.

Control flow (cont)Control flow (cont)

 Note 2: An expression is any valid
unit of code that resolves to a
VALUE. Case is an expression,
whether it is 2, 'a', or true. When case
matches the variables, wether with a
given variable or a set expression like
'true', code will execute, check the
condition and if matching, execute
and break.

-
For
...

'for' includes 3 statements: Initial
expression, where a variable is initia‐
lized, it's usually set like 'i', short for
Index. Condition, where we usually
compare the value of the Index to
something else; the loop will continue
unless this condition is false. If we
want the loop to go on 5 times, we
make it likeso: 1 < 5 and add the next
expression. IncrementExpression will
be next, so for each time the
statements under for are executed it
will sum one to the initial expression ,
check for the condition, and when i is
no longer less than 5 it will stop.

 for (let i = 0; i < 5; i++;)

 for (let i = 5; i >= 1; i--;)

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 3 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
https://cheatography.com/uploads/raposinha_1710964550_dynamic-typing.PNG
https://cheatography.com/uploads/raposinha_1710775527_primitive-variable-types.PNG
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Control flow (cont)Control flow (cont)

-
While
...

while(condition){statement}

- Do
...
while

Do-whiles are always executed
once even if the condition is not
true.

 do { sentence } while (condition)

Infinite
loops

You can create them accidentally,
causing a system break. Check for
them on the console

- For
... in

for(let key in person){}

 For each iteration the key variable
will hold the name of one of the
properties of the oobject.

 To access object's values:
person.name, person["name"] or
person[key] if we don't know the
properties name beforehand and
we need to calculate it at runtime.
Here, 'key' inside the brackets is
the throwaway name for the
properties' value. 'key' on its own
will print the property name (name,
age...)

- For
... of

for (let color of colors)

 In this type of loop, the property's
value is selected instead of the
whole object

Control flow (cont)Control flow (cont)

 Objects are not iterable, only
Arrays and Maps. To force an
Object into an array, use
Object.keys(object) like For ... in
or Object.entries(object)

Break
and
continue

They can be used in any kind of
loop. 'break;' interrupts the
code, 'continue' jumps to the
beginning of the loop on its
breakpoint and the next
execution happens.

ArraysArrays

Adding elementsAdding elements

Even on const declar‐
ations, arrays can be
written onto.

const numbers = [3,4]

But not like numbers =
 [3,4,5]; Because
Arrays are Objects, we
can use their function
properties, like: push
(adding to the end),
.unshift (pushes
existing elements to the
right, adds new
elements to beginning),
.splice (access a
specific position and
add or remove
elements - args: start,
amount of numbers to
delete, items to add)

numbers.push(5,6)
numbers.unshift(1,2)
numbers.splice(2,0,2.5,'b')
console.log(numbers) ->
1, 2, 2.5, 'b', 3, 4, 5, 6

Finding elementsFinding elements

Arrays (cont)Arrays (cont)

- Primit‐- Primit‐
ives:ives:

numbers = [1,2,3,4,1]

.indexOf()
->
number‐
s.inde‐
xOf(1) ->
0

Looks for a given input inside the
array and, if existing, will return the
index number of said array. If not, it
will return -1.

.lastInde‐
xOf() ->
number‐
s.lastInd‐
exOf(1) ->
4

Looks for a given input inside the
array and, if existing, will return the
index number of said array. If not, it
will return -1.

.includes()
->
number‐
s.incl‐
udes(3) ->
true

Checks for a given element existing
in the array. Returns true or false.

'fromI‐
ndex': A
second
argument
available
for all last
3
methods.
It starts
the search
from the
given
index
number.

console.log(apples.indexOf(1)) //0
console.log(apples.indexOf(1,1)) //4
console.log(apples.lastIndexOf(1))
//4
console.log(apples.lastIndexOf(1,1))
//0

--
ReferenceReference
types:types:

const courses = [{id: 1, name: 'a'},
{id: 2, name: 'b'}]

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 4 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Arrays (cont)Arrays (cont)

.find() ->cour‐
ses.find(function(‐
course){ return
course.name ===
'a' }) -> true

Here because the
reference is allocated
in another memory
slot, '.includes()' can't
be used.

Arrow functionsArrow functions Used to call functions,
pre-existant or not

 const course = course‐
s.find(course =>{
return course.name
=== 'a'; })

 const courseB =
courses.find(course
=> course.name ===
'a');

 const courseC =
courses.find((course)
=>{ return
course.name === 'a';
})

FunctionsFunctions

// Functions
// Performing a task:
function greet (name, lastName){
 console.log('Hello '
+ name + ' ' + lastName + '!!!')
}
greet("Juana");
let lastName = "la Loca"
greet("Juana",lastName);
// Calculating a value:
function square (Number) {
 return Number * Number;
}
let n = square(2);
console.log(n);

Functions (cont)Functions (cont)

> //4
console.log(4/2);

Basic conceptsBasic concepts

VariablesVariables Variables are data stored
somewhere in memory tempor‐
arly. When adressed, the
variable adress will be accesed
by the variable's name. Like a
box. The name will describe its
content, the contents will be
stored in the box.

Declar‐
ing/initi‐
alizing
variables
(as of
ES6)

letlet name = 'raposa';

 Variables cannot be reserved
keywords. They should be
concise and meaningful,
meaning they give us a clue of
the contents. They cannot start
with a number. They can't
contain spaces or hyphens.
Camel notation should be used
(firstName)). They're case
sensitive. They can be declared
in the same line (let name,
firstName, lastName;)

Basic concepts (cont)Basic concepts (cont)

Constant
variables

They are used when we don't
want the values to ever change.
If you don't want to redefine
constant should be the default.

TypesTypes There are primitive and
reference types.

Primitive
types:

String, number, boolean,
undefined, null

ObjectsObjects

Declaring
an object

const = circle {
 radius:1,
 location : {
 x: 1,
 y : 1
 }
 draw: function(){ console.log('dra
w'}
 }

Factory
functions

Functions that create objects in order to not repeat
code everytime you need a new one

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 5 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Objects (cont)Objects (cont)

 function createCircle(radius, x, y
){
return {
 radius: radius,
 location: {
 x: x,
 y: y
 },
 draw() {
 console.log('draw')
 }
};
 }

Constr‐
uctor
functions

Written in Pascal Notation. These are also functions
to generate objects.

 function Object() {} is an example of a Constructor
function. Whenever we create an object using the
Object literal syntax, a call is made into that object‐
constructor function

 The keyword 'this' is used instead of return, it's a
reference to the object executing this code.

Objects (cont)Objects (cont)

 When using the 'new' operator
a new empty object is created,
then the properties used with
'this' are set dinamically, then
the object is returned.

 function Address (street, city,
zipcode) { this.street = street;
this.city = city; this.zipcode =
zipcode; this.showAddress =
function showAddress() { for
(let key in Address){ console.l‐
og(key, Address[key]) } } }

Dynamic Objects in JavaScript are
dynamic, which means that
once created you can always
add new properties or
methods, or remove existing
ones.

Functions
are
objects,
they have
constr‐
uctors

Circle.constructor -> f

Objects (cont)Objects (cont)

Circle.call.call({},1) and const circle7 = new
Circle(1) are the same, .call.call is a function
prebuilt metjod. {} stands for the first
argument, an empty object - then this will
reference the new empty object instead of
the base object, window. The rest of the
arguments will be passed explicitly (like ->
this.radius = radius; Circle(radius);circle‐
7({},5). Which is to mean that if the 'new'
keyword isn't used, 'this' will point to window
object.

The applyapply method can also be used the
same as ''call'', but the explicit argument are
parsed through an array, like Circle.apply({},
[1,2])

In JavaScript, radius: radius, and
'radius,` is the same when defining an
object.
camelCaseNotation, PascalNotation

ObjectsObjects

Cloning for (let key in circle) anothe‐
r1[key] = circle[key]

 Object.assign(another2, circle)

 const another3 = Object.assign({
color: 'yellow' }, circle)

 const another4 = {...circle}

Garbage collectionGarbage collection

In low level languages when creating an
object we have to allocate memory for it
then deallocate it, not with JS. This is where
the Garbage Collector comes in. It finds the
variables and constants that are not used
and deallocate the memory

Math ObjectMath Object

It's a built-in Object.

The Math namespace object contains static
properties and methods for mathematical
constants and functions.

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 6 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

Javascript Fundamentals Cheat Sheet
by raposinha via cheatography.com/197915/cs/42598/

Math Object (cont)Math Object (cont)

It's designed for mathematical calculations
and so are its Properties and Functions
(Math.PI, Math.floor(), ...)

Math.random(), Math.round(), Math.max(‐
1,2,3), Math.min(1,2,3) (...)

https://developer.mozilla.org/en-US/doc‐
s/Web/JavaScript/Reference/Global_Objec‐
ts/Math

String ObjectsString Objects

String is a primitive type, primitive types
don't have properties and methods, only
objects. But a String Object also exists for
JavaScript.

const message = new String('hi');

It's typeof will be 'object'

However, the internal JavaScript engine will
automatically convert a String primitive type
onto a String Object if we use the dot
notation

String.length, String[3], String.includes('my'),
String.startsWith('a'), String.indexOf('my')

https://developer.mozilla.org/en-US/doc‐
s/Web/JavaScript/Reference/Global_Objec‐
ts/String

StringsStrings

\n adds a new line within a String

Template
literals

With these, ``, the text formats
prints as it's written

Date Object (Built-in)Date Object (Built-in)

const now
= new
Date()

Creates the current date and
time when object is created

Has get, set methods

https://developer.mozilla.org/en-US/doc‐
s/Web/JavaScript/Reference/Global_Objec‐
ts/Date -> to check formats, methods

By raposinharaposinha
cheatography.com/raposinha/

Not published yet.
Last updated 15th December, 2024.
Page 7 of 7.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/raposinha/
http://www.cheatography.com/raposinha/cheat-sheets/javascript-fundamentals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
http://www.cheatography.com/raposinha/
http://crosswordcheats.com

	Javascript Fundamentals Cheat Sheet - Page 1
	Introduction
	Logical operators with non-booleans
	Operators
	Logical operators
	Operator's precedence
	Bitwise operators
	Arithmetic Operators
	Ternary operators

	Javascript Fundamentals Cheat Sheet - Page 2
	Assignment operators
	Equality operators
	Reference types
	Comparison operators
	Boilerplate project

	Javascript Fundamentals Cheat Sheet - Page 3
	JavaScript is a Dynamic Typing language
	Primitive variable types
	Control flow

	Javascript Fundamentals Cheat Sheet - Page 4
	Arrays

	Javascript Fundamentals Cheat Sheet - Page 5
	Basic concepts
	Objects
	Functions

	Javascript Fundamentals Cheat Sheet - Page 6
	Objects
	Garbage collection
	Math Object

	Javascript Fundamentals Cheat Sheet - Page 7
	String Objects
	Strings
	Date Object (Built-in)

