

by quantumrustler via cheatography.com/212850/cs/46340/

R Environment		
Ctrl + L (Windows)	Clear command window	
ls()	List objects in environment	
rm(obj)	Remove object	
<pre>print('text')</pre>	Displays text or object	
<pre>print(obj)</pre>		

Operations and Special Characters			
+, -, *, /, ^	Arithmetic operations		
%*%	Matrix multiplication		
•	Transpose		
==, !=, <, >, <=, >=	Relational operators		
#	Comment		
<- or =	Assignment		

Elementary Math Functions	
sqrt(x)	Square root
exp(x=3)	Exponential of x
abs (x=-1)	Absolute value of x
log(x= exp(1), b=exp(1))	Logarithm with base b. If b is not specified, e is assumed by default

Vectors, Matrices, Arrays, Lists, Data Frames	
c(1,2,3)	Combine values into vector
m:n	Sequence from m to n (can't do spacing)
seq(fr om= 1,t o=1 0,by=2)	Sequence with step. For decreasing step, by must be -ve
seq(fr om= 3,t o=2 7,1 eng th.o ut=40)	Sequence with as many numbers specified
rep(x= c(3 ,62 ,8.3), tim es= 3,e ach=2)	Repeat values. The value for times provides the number of times to repeat x , and each provides the number of times to repeat each element of x .
sort(x =c(2.5 ,-1 ,-1 $0,3.44$),d ecr eas i ng =FALSE)	Sort a vector in increasing or decreasing order
length $(x = c(3, 2, 8, 1))$	Determines how many entries exist in a vector given as the argument x
<pre>myvec[1] myvec[c(1,3,5)]</pre>	Retrieve specific elements from a vector
myvec[-1] myvec[-c(1,3,5)]	Delete elements by using negative versions of the indexes
myvec[m:n]	Retrieve elements from a vector with a sequence of indices from m to n
prod(m yvec)	Multiply all elements in a vector

By quantumrustler

Not published yet. Last updated 28th July, 2025.

Page 1 of 7.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by quantumrustler via cheatography.com/212850/cs/46340/

Vectors, Matrices, Arrays, Lists, Data Frames (cont)	
matrix (da ta= c(- 3,2 ,89 3,0.17),n row =2, nco l=2 , by row =FALSE)	Create a matrix filled in a column-by-column fashion
rbind(1:3 ,4:6)	Bind together vectors as rows of a matrix
cbind(c(1 ,4) ,c(2,5),c (3,6))	Bind together vectors as columns of a matrix
<pre>dim(mymat) nrow(m ymat) ncol(m ymat)</pre>	Provides the dimensions of a matrix
A[,n]	Refers to the elements in all the rows of column n of the matrix A
A[n,]	Refers to the elements in all the columns of row n of the matrix A
A[,m:n]	Refers to the elements in all the rows between columns m and n of the matrix A
A(m:n,)	Refers to the elements in all the columns between rows m and n of the matrix A
A[m:n,p:q]	Refers to the elements in rows m through n and columns p through q of the matrix A.
Indexing can be done using individual indices in vectors. To delete or omit elements from a matrix, use negative indexes.	
diag(x=3)	Create an identity matrix of size 3 x 3
diag(x=A)	Identify the values along the diagonal of a square matrix
t(A)	Find the transpose of a matrix
solve(A)	Find the inverse of a matrix
list(m atr ix(dat a=1 :4, nro w=2 ,nc ol= 2), c(T ,F, -T,T),"h ell o")	Create a list containing mixed object types. To name the components of a list as it's being created, assign a label to each component in the list command
<pre>lst[[i]]</pre>	Access the ith element of a list
lst[1:2]	Returns a sublist of selected elements
names(lst)	Name list components to make the elements more recognizable and easier to work with
<pre>lst\$name x[['na me']]</pre>	Access element by name (or create new column)
x\$nested <- list(a =1:3)	Add a nested list to an existing list

By quantumrustler

Not published yet. Last updated 28th July, 2025. Page 2 of 7. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by quantumrustler via cheatography.com/212850/cs/46340/

Vectors, Matrices, Arrays, Lists, Data Frames (cont)

data.frame(person=c("Peter","Lois","Meg","Chris","Stewie"),
 age=c(42,40,17,14,1),
 gender=factor(c("M","F","F","M","M")),
 stringsAsFactors=TRUE)

df[df\$ gender == 'M',]
 Logical Subset
 Subset rows where gender is M

Data frames are treated like matrices, so you can also use functions like nrow(df).

Non-numeric Values	
TRUE (or T)	Logical values
FALSE (or F)	
any(mat)	Returns TRUE if any of the logicals in the vector are TRUE and returns FALSE otherwise
all(mat)	Returns a TRUE only if all of the logicals are TRUE, and returns FALSE otherwise
"This is a character string -	Character strings
nchar(x=str)	Returns the number of characters in a string. length(x=str) != nchar(x=str)
<pre>cat("Hello", "worldd\b", ".\n", sep=" ")</pre>	Sends output directly to the console screen and doesn't formally return anything
<pre>paste("Hello", "world", ".", sep=" ")</pre>	Concatenates and then returns the final character string as a usable R object
<pre>substr(x=str, start=21, stop=27)</pre>	Extracts a substring from x, starting at start and ending at stop
<pre>sub(pattern="chuck", replacement="hurl", x=str)</pre>	Replaces the first match of pattern in x with replacement
<pre>gsub(pattern="chuck", replacement="hurl", x=bar)</pre>	Replaces all matches of pattern in x with replacement
<pre>factor(x=c("low", "medium", "high", "medium"))</pre>	Converts a vector x into a categorical variable with labeled levels (similar to enums from other languages)

By quantumrustler

Not published yet. Last updated 28th July, 2025. Page 3 of 7. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by quantumrustler via cheatography.com/212850/cs/46340/

Non-numeric Values (cont)

levels (x= myvec)

Lists the categories (levels) in the factor x

Multidimensional Arrays	
array(dat a=1:24, dim=c(3, 4, 2))	Creates a 3D array with 3 rows, 4 columns, and 2 layers
array(dat a=r ep(1:2 4,t ime s=3),d im= c(3 ,4, -2,3))	Creates a 4D array with dimensions 3×4×2×3
A[, , n]	All rows and columns in the n-th matrix (3rd dim) of A
A[, m, n]	All rows in column m of the n-th matrix
A[i, ,]	All columns and layers of row i
A[, , , p]	All rows, columns, and matrices in the p-th 4th dimension slice
A[m:n, , ,]	All columns and dimensions for rows m through n
A[, , m:n]	All rows and columns for matrices m through n
A[1:2, 2:3, 1, 1]	A specific 2×2 submatrix from layer 1, 4th-dim slice 1

Statistics	
sum(xdata)	Sum all elements in a vector
mean(x data, na.rm= FALSE)	Calculates the arithmetic mean
median (xdata)	Finds the median of a data
table(xdata)	Returns the frequencies
<pre>xtab[x tab ==m ax(xtab)]</pre>	Returns the mode, where xtab is a table of xdata
min(xdata)	Returns the smallest value
max(xdata)	Returns the largest value
range(xdata)	Returns the smallest and largest values
round(x, n)	Round to the specified number of decimal places (n)
<pre>tapply(chickwts\$weight, INDEX=chickwts\$feed, FUN=mean)</pre>	Applies mean to the numerical data for each grouping variable
<pre>quanti le(x=x data, prob=0.8) quanti le(x=x data, prob=c (0.2 5, 0.5 ,0.75))</pre>	Returns the quantile(s) of interest
summar y(x data)	Provides statistics automatically
<pre>var(xdata) sd(xdata) IQR(xdata)</pre>	Direct R commands for computing measures of spread (variance, standard deviation, interquartile range)

By quantumrustler

Not published yet. Last updated 28th July, 2025. Page 4 of 7. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by quantumrustler via cheatography.com/212850/cs/46340/

Statistics (cont)	
cov(xd ata ,ydata)	Computes the covariance between two numeric vectors
cor(xd ata ,ydata)	Computes the correlation coefficient between two numeric vectors
<pre>plot(x, y, line="l ", xlab="x -ax is", yla b="y -ax - is")</pre>	Creates a scatter plot of y versus x
15 /	

Probability	
Basic Probability Formulas	
$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$Pr(A \cap B) = 0$	If A and B are disjoint/mutually exclusive (cannot happen at the same time)
$Pr(A \cap B) = Pr(A) \times Pr(B)$	If A and B are independent (not related)
$Pr(A^C) = 1 - Pr(A)$	
$Pr(A \mid B) = Pr(A \cap B) / Pr(B)$	
$P(X > x) = 1 - P(X \le x)$	
cumsum(X.prob)	Calculates CDF of discrete RV
sum(X.prob*X.outcomes)	Calculates E[X] (X is discrete RV)
sum((X.outcomes <i>X.mean)^2</i> X.prob))	Calculates $Var(X)$ (X is discrete RV) Alternative: $E[X^2]$ - $(E[X])^2$
$F(x) = \int^{x} f(u) du$	CDF (continuous)
Plot Probabilities vs. Realizations	
barplot(height=X.prob,	PMF
ylim=c(0,0.5),	
<pre>names.arg=X.outcomes,</pre>	
space=0,	
xlab="x",	
ylab="Pr(X = x)")	
barplot(X.cumul,	CDF (discrete)
names.arg=X.outcomes,	
space=0,	
xlab="x",	
ylab="Pr(X <= x)")	
Common Probability Distributions	
X~Binomial(size, prob) (X is discrete RV)	
dbinom(x=5,size=8,prob=1/6)	Calculates $P(X = x)$ where x is no. of trials
<pre>sum(dbinom(x=0:5,size=8,prob=1/6)) pbinom(q=5,size=8,prob=1/6)</pre>	Calculates $P(X \le q)$ where x is no. of trials
qbinom(p=0.95,size=8,prob=1/6)	Finds smallest x given $P(X \le x) = p$ (inverse of CDF)
X~Pois(λ) (X is discrete RV)	

By quantumrustler

Not published yet. Last updated 28th July, 2025. Page 5 of 7. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

by quantumrustler via cheatography.com/212850/cs/46340/

Probability (cont)	
dpois(x=3,lambda=3.22)	Calculates P(X = x) where x is no. of events observed
Tip: $P(X = 5)$ is meaningless so $P(X < 5) = P(X <= 5)$	
ppois(q=3,lambda=3.22)	Calculates $P(X \le q)$ where q is no. of events
qpois(p=0.95,lambda=3.22)	Finds smallest x given P(X <= x) = p (inverse of CDF)
rpois(n=15,lambda=3.22)	Generates n random numbers from a Poisson distribution given lambda
$X\sim Normal(\mu, \sigma)$ (X is continuous RV)	
dnorm(x, mean, sd)	Returns the height of the normal distribution curve at x
pnorm(q, mean, sd) Default: $\mu = 0$, $\sigma = 1$	Calculates $P(X \le q)$ given μ and σ or $P(Z \le z)$ if defaults are used
qnorm(p, mean, sd)	Finds smallest x given P(X <= x) = p (inverse of CDF)
qnorm(p, lower.tail=FALSE)	Finds smallest z given $P(Z > z) = p$ Equal to $P(Z <= z) = 1 - p$
rnorm(n, mean, sd)	Generates n random numbers from a Normal distribution given μ and σ
QQ Plots and Histograms	
hist(chickwts\$weight, main="", xlab="weight", xlim=c(xi,xf))	Draws a histogram of the given data
qqnorm(chickwts\$weight, main="Normal QQ plot of weights")	Creates a QQ plot
qqline(chickwts\$weight, col="gray")	Adds a reference line to the QQ plot

By quantumrustler

Not published yet. Last updated 28th July, 2025. Page 7 of 7. Sponsored by **Readable.com**Measure your website readability!
https://readable.com