
Programming Cheat Sheet
by PurrG via cheatography.com/200753/cs/42427/

IterationIteration

For loop While loop

for i in range (...,...): i = 1

-print (i * 100) while i <= 5:

-> number of reptationis known. -print (i * 100)

 -i = i + 1

 -> number of repetitions is unknown.

In summary, while loops are more flexible in terms of the condition they evaluate, making them suitable for situations where the number of
iterations is not known beforehand or might change during runtime. For loops are ideal when you need to iterate over a sequence of known
length or a predefined collection.

Sub ProgramsSub Programs

declaration of the procedure declaration of the function

def procedure_name(param01 , param02): def function_name(para1_,para2):

 action(s) action(s)

 procedure_name(param01, param02) return variable_name / expression

In summary, the key difference lies in whether the block of code returns a value or not. Functions return values, while procedures do not.
However, in languages like Python, the distinction is less strict, as functions can return None and procedures can still be defined using functions
that return None. The choice of using functions or procedures depends on the specific requirements of the task and the programming paradigm
being followed.

http://www.cheatography.com/
http://www.cheatography.com/purrg/
http://www.cheatography.com/purrg/cheat-sheets/programming

RecursivityRecursivity

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

This is the condition that stops the recursive
calls.

Recursion can be a powerful tool for solving
problems that can be broken down into
smaller, similar subproblems. However, it's
essential to ensure that the base case is
reachable and that the recursive calls
converge towards the base case to avoid
infinite recursion. Additionally, recursive
solutions may not always be the most
efficient, as they can consume more
memory due to the recursive calls creating a
new stack frame for each function call.

StringString

String Length concatenations comparing iterating character
membership

Assignment:Assignment: s1 = "1LBC1" s = "1LBC1
"

s1 = "abcd" for c in s: code

variable_name = "val‐
ue"

L=len(s1) s1 = "ASDP
2"

s2 = "abcd" code code

s1 = 1LBC1 print(L) s2 = s + s1 s3 = "abcd1" code code

Access to charactersAccess to characters -> displays 5 print (s2) if s1 == s2: code code

s1 = "1LBC1" s1 = "1LBC1" *->display "‐
1LBC1 ASP2"

 print ("s1 and s2 are similar"
)

code code

s1 = "1LBC2" s2 = s1 [1 : 4] else: code code

String (cont)String (cont)

print (s1) print (s2) print ("s1 and s2 are different‐
")

-> displays "‐
1LBC2"

->displays "‐
LBC"

 if s1 == s3:

 print ("s1 and s3 are similar")
 else:
 print ("s1 and s3 are different‐

")

By PurrGPurrG
cheatography.com/purrg/

Not published yet.
Last updated 18th February, 2024.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/purrg/
https://readable.com

	Programming Cheat Sheet - Page 1
	Iteration
	Sub Programs
	Recursivity
	String

