
Programming Cheat Sheet
by PurrG via cheatography.com/200753/cs/42427/

Iteration

For loop While loop

for i in range (...,...): i = 1

-print (i * 100) while i <= 5:

-> number of reptat​ionis known. -print (i * 100)

 -i = i + 1

 -> number of repeti​tions is unknown.

In summary, while loops are more flexible in terms of the condition they evaluate, making them suitable for situations where the number of
iterations is not known beforehand or might change during runtime. For loops are ideal when you need to iterate over a sequence of known
length or a predefined collec​tion.

Sub Programs

declar​ation of the procedure declar​ation of the function

def proced​ure​_na​me(​param01 , param02): def functi​on_​nam​e(p​ara​1_,​para2):

 action(s) action(s)

 proced​ure​_na​me(​par​am01, param02) return variab​le_name / expression

In summary, the key difference lies in whether the block of code returns a value or not. Functions return values, while procedures do not.
However, in languages like Python, the distin​ction is less strict, as functions can return None and procedures can still be defined using functions
that return None. The choice of using functions or procedures depends on the specific requir​ements of the task and the progra​mming paradigm
being followed.

http://www.cheatography.com/
http://www.cheatography.com/purrg/
http://www.cheatography.com/purrg/cheat-sheets/programming

Recurs​ivity

def factor​ial(n):

 if n == 0:

 return 1

 else:

 return n * factor​ial(n - 1)

This is the condition that stops the recursive
calls.

Recursion can be a powerful tool for solving
problems that can be broken down into
smaller, similar subpro​blems. However, it's
essential to ensure that the base case is
reachable and that the recursive calls
converge towards the base case to avoid
infinite recursion. Additi​onally, recursive
solutions may not always be the most
efficient, as they can consume more
memory due to the recursive calls creating a
new stack frame for each function call.

String

String Length concat​ena​tions comparing iterating character
membership

Assign​ment: s1 = "​1LB​C1" s = "​1LB​C1
"

s1 = "​abc​d" for c in s: code

variab​le_name = "​val​‐
ue"

L=len(s1) s1 = "​ASD​P
2"

s2 = "​abc​d" code code

s1 = 1LBC1 print(L) s2 = s + s1 s3 = "​abc​d1" code code

Access to characters -> displays 5 print (s2) if s1 == s2: code code

s1 = "​1LB​C1" s1 = "​1LB​C1" *->​display "​‐
1LBC1 ASP2"

 print ("s1 and s2 are simila​r"
)

code code

s1 = "​1LB​C2" s2 = s1 [1 : 4] else: code code

String (cont)

print (s1) print (s2) print ("s1 and s2 are differ​ent​‐
")

-> displays "​‐
1LB​C2"

->d​isplays "​‐
LBC​"

 if s1 == s3:

 print ("s1 and s3 are simila​r")
 else:
 print ("s1 and s3 are differ​ent​‐

")

By PurrG
cheatography.com/purrg/

Not published yet.
Last updated 18th February, 2024.
Page 2 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/purrg/
http://crosswordcheats.com

	Programming Cheat Sheet - Page 1
	Iteration
	Sub Programs
	Recurs­ivity
	String

