

Sorting algorithms Cheat Sheet

by Priyal kumar (pryl) via cheatography.com/66402/cs/16808/

Sorting algorithms and Methods		
Sorting algorithms	Methods	
Bubble sort	Exchanging	
Heapsort	Selection	
Insertion sort	Insertion	
Introsort	Partitioning & Selection	
Merge sort	Merging	
Patience sorting	Insertion & Selection	
Quicksort	Partitioning	
Selection sort	Selection	
Timsort	Insertion & Merging	
Unshuffle sort	Distribution and Merge	

Best and Worst Case		
Algorithms	Best Case	Worst Case
Bogosort	n	∞
Bubble sort	n	n^2
Bucket sort (uniform keys)	-	n ² k
Heap sort	n log n	n log n
Insertion sort	n	n^2
Merge sort	n log n	n log n
Quick sort	n log n	n^2
Selection sort	n^2	n^2
Shell sort	n log n	n ^{4/3}
Spreadsort	n	n(k/s+d)
Timsort	n	n log n
Unshuffle sort	n	kn

Insertion sort		
function	insertionSortR(array A, int n)	
if n>0		
	ins ert ion Sor tR(A,n-1)	
	$x \leftarrow A[n]$	
	j ← n-1	
	while j \geq = 0 and A[j] $>$ x	
	$A[j+1] \leftarrow A[j]$	
	j ← j-1	
end while		
	A[j+1] ← x	
end if		
end function		

```
Merge sort
function merge_sort(list m)
       // Base case. A list of zero or one
elements is sorted, by defini tion.
      if length of m \leq 1 then
               return m
       // Recursive case. First, divide the list
into equal- sized sublists
      // consisting of the first half and second
half of the list.
      // This assumes lists start at index 0.
      var left := empty list
      var right := empty list
       for each x with index i in m do
               if i < (length of m)/2 then
                       add x to left
               else
```


By **Priyal kumar** (pryl) cheatography.com/pryl/

9pryl.tiddlyhost.com/#door:door

Published 27th August, 2018. Last updated 27th August, 2018. Page 1 of 3. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com

Sorting algorithms Cheat Sheet by Priyal kumar (pryl) via cheatography.com/66402/cs/16808/

Merge sort (cont)

> add x to right
// Recursively sort both sublists.
left := merge_sort(left)
right := merge_sort(right)
// Then merge the now-sorted sublists.
return merge(left, right)

Bogosort

Bucket sort

```
function bucketSort(array, n) is
   buckets ← new array of n empty lists
   for i = 0 to (lengt h(a rra y)-1) do
        insert array[i] into bucket s[m sbi ts(-
arr ay[i], k)]
   for i = 0 to n - 1 do
        nex tSo rt( buc ket s[i]);
   return the concat enation of bucket s[0],
...., bucket s[n-1]
```

Resources

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms

http://bigocheatsheet.com

Sorting algorithm complexities					
Algorithms	Average Case	Memory complexity			
Bitonic sorter	log ² n	n log ² n			
Bogosort	n × n!	1			
Bubble sort	n^2	1			
Bucket sort (uniform keys)	n+k	nk			
Burstsort	n(k/d)	n(k/d)			
Counting sort	n+r	n+r			
Heap sort	n log n	1			
Insertion sort	n^2	1			
Introsort	n log n	log n			
LSD Radix Sort	n(k/d)	n+2 ^d			
Merge sort	n log n	n			
MSD Radix Sort (inplace)	n(k/d)	2 ^d			
Patience sort	-	n			
Pigeonhole sort	n+2 ^k	2^k			
Quicksort	n log n	log n			
Selection sort	n^2	1			
Shell sort	Depends on gap sequence	1			
Spaghetti sort	n	n^2			
Spreadsort	n(k/d)	(k/d)2 ^d			
Stooge sort	n ^(log 3/log1.5)	n			
Timsort	n log n	n			

By **Priyal kumar** (pryl) cheatography.com/pryl/

9pryl.tiddlyhost.com/#door:door

Published 27th August, 2018. Last updated 27th August, 2018. Page 2 of 3. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

https://apollopad.com

Sorting algorithms Cheat Sheet by Priyal kumar (pryl) via cheatography.com/66402/cs/16808/

Quicksort

```
algorithm quicksort(A, lo, hi) is
   if lo < hi then
        p := partit ion(A, lo, hi)
        qui cks ort(A, lo, p - 1)
        qui cks ort(A, p + 1, hi)

algorithm partit ion(A, lo, hi) is
   pivot := A[hi]
   i := lo
   for j := lo to hi - 1 do
        if A[j] < pivot then
        swap A[i] with A[j]
        i := i + 1</pre>
```

Quicksort (cont)

> swap A[i] with A[hi] return i

Selection sort

```
procedure selection sort
    list : array of items
    n : size of list
    for i = 1 to n - 1
     $et current element as minimum/
           min = i
        chekk the element to be minimum /
           for j = i+1 to n
                 if list[j] < list[min] then</pre>
                       min = j;
                 end if
           end for
        swap the minimum element with the current
element/
           if indexMin != i then
               swap list[min] and list[i]
           end if
    end for
end procedure
```


By **Priyal kumar** (pryl) cheatography.com/pryl/

9pryl.tiddlyhost.com/#door:door

Published 27th August, 2018. Last updated 27th August, 2018. Page 3 of 3. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!

https://apollopad.com