
Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Observable InterfaceObservable Interface

observable.map(f)observable.map(f)

maps values using given function,
returning a new EventStream. Instead of
a function, you can also provide a
constant value. Further, you can use a
property extractor string like ".keyCode".
So, if f is a string starting with a dot, the
elements will be mapped to the corres‐
ponding field/function in the event value.
For instance map(".keyCode") will pluck
the keyCode field from the input values.
If keyCode was a function, the result
stream would contain the values
returned by the function. The Function
Construction rules below apply here.

stream.map(property)stream.map(property)

maps the stream events to the current
value of the given property. This is
equivalent to property.sampledBy(st‐
ream)

observable.mapError(f)observable.mapError(f)

maps errors using given function. More
specifically, feeds the "error" field of the
error event to the function and produces
a "Next" event based on the return value.
Function Construction rules apply. You
can omit the argument to produce a Next
event with undefined value.

observable.mapEnd(f)observable.mapEnd(f)

Adds an extra Next event just before
End. The value is created by calling the
given function when the source stream
ends. Instead of a function, a static value
can be used. You can omit the argument
to produce a Next event with undefined
value.

Observable Interface (cont)Observable Interface (cont)

observable.filter(f)observable.filter(f)

filters values using given predicate
function. Instead of a function, you can
use a constant value (true/false) or a
property extractor string (like ".isValuab‐
le") instead. Just like with map, indeed.

observable.filter(property)observable.filter(property)

filters values based on the value of a
property. Event will be included in output
iff the property holds true at the time of
the event.

observable.takeWhile(f)observable.takeWhile(f)

takes while given predicate function
holds true

observable.take(n)observable.take(n)

takes at most n elements from the
stream. Equals to Bacon.never() if n <=
0.

observable.takeUntil(stream2)observable.takeUntil(stream2)

takes elements from source until a Next
event appears in the other stream. If
other stream ends without value, it is
ignored

observable.skip(n)observable.skip(n)

skips the first n elements from the
stream

observable.delay(delay)observable.delay(delay)

delays the stream/property by given
amount of milliseconds. Does not delay
the initial value of a Property.

observable.throttle(delay)observable.throttle(delay)

throttles stream/property by given
amount of milliseconds. Events are
emitted with the minimum interval of
delay. The implementation is based on
stream.bufferWithTime. Does not affect
emitting the initial value of a Property.

Observable Interface (cont)Observable Interface (cont)

observable.debounce(delay)observable.debounce(delay)

throttles stream/property by given
amount of milliseconds, but so that event
is only emitted after the given "quiet
period". Does not affect emitting the
initial value of a Property. The difference
of throttle and debounce is the same as
it is in the same methods in jQuery.

observable.debounceImmediate(delay)observable.debounceImmediate(delay)

passes the first event in the stream
through, but after that, only passes
events after a given number of millis‐
econds have passed since previous
output.

observable.doAction(f)observable.doAction(f)

returns a stream/property where the
function f is executed for each value,
before dispatching to subscribers. This is
useful for debugging, but also for stuff
like calling the preventDefault() method
for events. In fact, you can also use a
property-extractor string instead of a
function, as in ".preventDefault".

observable.not()observable.not()

returns a stream/property that inverts
boolean values

By ProLoserProLoser
cheatography.com/proloser/

Published 11th June, 2013.
Last updated 13th May, 2016.
Page 1 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
http://www.cheatography.com/proloser/
https://apollopad.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Observable Interface (cont)Observable Interface (cont)

observable.flatMap(f)observable.flatMap(f)

for each element in the source stream,
spawn a new stream using the function f.
Collect events from each of the spawned
streams into the result EventStream.
This is very similar to selectMany in
RxJs. Note that instead of a function, you
can provide a stream/property too. Also,
the return value of function f can be
either an Observable (stream/property)
or a constant value. The result of flatMap
is always an EventStream. stream.fl‐
atMap() can be used conveniently with
Bacon.once() and Bacon.never() for
converting and filtering at the same time,
including only some of the results.

observable.flatMapLatest(f)observable.flatMapLatest(f)

like flatMap, but instead of including
events from all spawned streams, only
includes them from the latest spawned
stream. You can think this as switching
from stream to stream. The old name for
this method is switch. Note that instead
of a function, you can provide a
stream/property too.

observable.flatMapFirst(f)observable.flatMapFirst(f)

like flatMap, but doesn't spawns a new
stream only if the previously spawned
stream has ended.

observable.scan(seed, f)observable.scan(seed, f)

scans stream/property with given seed
value and accumulator function, resulting
to a Property. For example, you might
use zero as seed and a "plus" function
as the accumulator to create an "integr‐
al" property. Instead of a function, you
can also supply a method name such as
".concat", in which case this method is
called on the accumulator value and the
new stream value is used as argument.

Observable Interface (cont)Observable Interface (cont)

observable.fold(seed, f)observable.fold(seed, f)

is like scan but only emits the final value,
i.e. the value just before the observable
ends. Returns a Property.

observable.reduce(seed,f)observable.reduce(seed,f)

synonym for fold.

observable.diff(start, f)observable.diff(start, f)

returns a Property that represents the
result of a comparison between the
previous and current value of the
Observable. For the initial value of the
Observable, the previous value will be
the given start.

observable.zip(other, f)observable.zip(other, f)

return an EventStream with elements
pair-wise lined up with events from this
and the other stream. A zipped stream
will publish only when it has a value from
each stream and will only produce
values up to when any single stream
ends. Be careful not to have too much "‐
drift" between streams. If one stream
produces many more values than some
other excessive buffering will occur
inside the zipped observable.

observable.slidingWindow(max[, min])observable.slidingWindow(max[, min])

returns a Property that represents a "‐
sliding window" into the history of the
values of the Observable. The result
Property will have a value that is an
array containing the last n values of the
original observable, where n is at most
the value of the max argument, and at
least the value of the min argument. If
the min argument is omitted, there's no
lower limit of values.

Observable Interface (cont)Observable Interface (cont)

observable.log()observable.log()

logs each value of the Observable to the
console. It optionally takes arguments to
pass to console.log() alongside each
value. To assist with chaining, it returns
the original Observable. Note that as a
side-effect, the observable will have a
constant listener and will not be garbage-
collected. So, use this for debugging
only and remove from production code.

observable.combine(property2, f)observable.combine(property2, f)

combines the latest values of the two
streams or properties using a two-arg
function. Similarly to scan, you can use
a method name instead, so you could do
a.combine(b, ".concat") for two
properties with array value. The result is
a Property.

observable.withStateMachine(initState, f)observable.withStateMachine(initState, f)

lets you run a state machine on an
observable. Give it an initial state object
and a state transformation function that
processes each incoming event and
returns and array containing the next
state and an array of output events.

observable.decode(mapping)observable.decode(mapping)

decodes input using the given mapping.
Is a bit like a switch-case or the decode
function in Oracle SQL. For example, the
following would map the value 1 into the
the string "mike" and the value 2 into the
value of the who property.

Both EventStream and Property share the
Observable interface, and hence share a lot
of methods. Common methods are listed
below.
https://github.com/raimohanska/bacon.js‐
#common-methods-in-eventstreams-and-‐
properties

By ProLoserProLoser
cheatography.com/proloser/

Published 11th June, 2013.
Last updated 13th May, 2016.
Page 2 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js#common-methods-in-eventstreams-and-properties
http://www.cheatography.com/proloser/
https://apollopad.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

EventStreamEventStream

Bacon.EventStreamBacon.EventStream

a stream of events

stream.onValue(f)stream.onValue(f)

subscribes a given handler function to
event stream. Function will be called for
each new value in the stream. This is the
simplest way to assign a side-effect to a
stream. The difference to the subscribe
method is that the actual stream values
are received, instead of Event objects.
Function Construction rules below apply
here.

stream.onValues(f)stream.onValues(f)

like onValue, but splits the value
(assuming its an array) as function
arguments to f

stream.onEnd(f)stream.onEnd(f)

subscribes a callback to stream end. The
function will be called when the stream
ends.

stream.subscribe(f)stream.subscribe(f)

subscribes given handler function to
event stream. Function will receive Event
objects (see below). The subscribe() call
returns a unsubscribe function that you
can call to unsubscribe. You can also
unsubscribe by returning Bacon.noMore
from the handler function as a reply to an
Event.

stream.skipDuplicates([isEqual])stream.skipDuplicates([isEqual])

drops consecutive equal elements. So,
from [1, 2, 2, 1] you'd get [1, 2, 1]. Uses
the === operator for equality checking by
default. If the isEqual argument is
supplied, checks by calling isEqual(oldV‐
alue, newValue). For instance, to do a
deep comparison,you can use the
isEqual function from underscore.js like
stream.skipDuplicates(_.isEqual).

EventStream (cont)EventStream (cont)

stream1.concat(stream2)stream1.concat(stream2)

concatenates two streams into one
stream so that it will deliver events from
stream1 until it ends and then deliver
events from stream2. This means too
that events from stream2, occurring
before the end of stream1 will not be
included in the result stream.

stream.merge(stream2)stream.merge(stream2)

merges two streams into one stream that
delivers events from both

stream.bufferWithTime(delay)stream.bufferWithTime(delay)

buffers stream events with given delay.
The buffer is flushed at most once in the
given delay. So, if your input contains
[1,2,3,4,5,6,7], then you might get two
events containing [1,2,3,4] and [5,6,7]
respectively, given that the flush occurs
between numbers 4 and 5.

stream.bufferWithTime(f)stream.bufferWithTime(f)

works with a given "defer-function"
instead of a delay. Here's a simple
example, which is equivalent to
stream.bufferWithTime(10): stream.bu‐
fferWithTime(function(f) { setTimeout(f,
10) })

stream.bufferWithCount(count)stream.bufferWithCount(count)

buffers stream events with given count.
The buffer is flushed when it contains the
given number of elements. So, if you
buffer a stream of [1, 2, 3, 4, 5] with
count 2, you'll get output events with
values [1, 2], [3, 4] and [5].

stream.bufferWithTimeOrCount(delay,stream.bufferWithTimeOrCount(delay,
count)count)

buffers stream events and flushes when
either the buffer contains the given
number elements or the given amount of
milliseconds has passed since last
buffered event.

EventStream (cont)EventStream (cont)

stream.toProperty()stream.toProperty()

creates a Property based on the EventS‐
tream. Without arguments, you'll get a
Property without an initial value. The
Property will get its first actual value from
the stream, and after that it'll always
have a current value.

stream.toProperty(initialValue)stream.toProperty(initialValue)

creates a Property based on the EventS‐
tream with the given initial value that will
be used as the current value until the
first value comes from the stream.

stream1.awaiting(stream2)stream1.awaiting(stream2)

creates a Property that indicates whether
stream1 is awaiting stream2, i.e. has
produced a value after the latest value
from stream2. This is handy for keeping
track whether we are currently awaiting
an AJAX response: var showAjaxIndi‐
cator = ajaxRequest.awaiting(ajaxRe‐
sponse)

https://github.com/raimohanska/bacon.js?
utm_source=javascriptweekly&utm_mediu‐
m=email#eventstream

BusBus

new Bacon.Bus()new Bacon.Bus()

returns a new Bus.

bus.push(x)bus.push(x)

pushes the given value to the stream.

bus.end()bus.end()

ends the stream. Sends an End event to
all subscribers. After this call, there'll be
no more events to the subscribers. Also,
the Bus push and plug methods have no
effect.

bus.error(e)bus.error(e)

sends an Error with given message to all
subscribers

By ProLoserProLoser
cheatography.com/proloser/

Published 11th June, 2013.
Last updated 13th May, 2016.
Page 3 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#eventstream
http://www.cheatography.com/proloser/
https://apollopad.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Bus (cont)Bus (cont)

bus.plug(stream)bus.plug(stream)

plugs the given stream to the Bus. All
events from the given stream will be
delivered to the subscribers of the Bus.
Returns a function that can be used to
unplug the same stream. The plug
method practically allows you to merge
in other streams after the creation of the
Bus. I've found Bus quite useful as an
event broadcast mechanism in the
Worzone game, for instance.

Bus is an EventStream that allows you to
push values into the stream. It also allows
pluggin other streams into the Bus. The Bus
practically merges all plugged-in streams
and the values pushed using the push
method.

https://github.com/raimohanska/bacon.js?
utm_source=javascriptweekly&utm_mediu‐
m=email#bus

PropertyProperty

Bacon.PropertyBacon.Property

a reactive property. Has the concept of "‐
current value". You can create a
Property from an EventStream by using
either toProperty or scan method. Note
depending on how a Property is created,
it may or may not have an initial value.

Bacon.constant(x)Bacon.constant(x)

creates a constant property with value x.

property.subscribe(f)property.subscribe(f)

subscribes a handler function to
property. If there's a current value, an
Initial event will be pushed immediately.
Next event will be pushed on updates
and an End event in case the source
EventStream ends.

Property (cont)Property (cont)

property.onValue(f)property.onValue(f)

similar to eventStream.onValue, except
that also pushes the initial value of the
property, in case there is one. See
Function Construction rules below for
different forms of calling this method.

property.onValues(f)property.onValues(f)

like onValue, but splits the value
(assuming its an array) as function
arguments to f

property.onEnd(f)property.onEnd(f)

subscribes a callback to stream end.
The function will be called when the
source stream of the property ends.

property.assign(obj, method, property.assign(obj, method, [param...][param...]))

calls the method of the given object with
each value of this Property. You can
optionally supply arguments which will
be used as the first arguments of the
method call. For instance, if you want to
assign your Property to the "disabled"
attribute of a JQuery object, you can do
this: myProperty.assign($("#my-but‐
ton"), "attr", "disabled") A simpler
example would be to toggle the visibility
of an element based on a Property:
myProperty.assign($("#my-button"), "‐
toggle") Note that the assign method is
actually just a synonym for onValue and
the function construction rules below
apply to both.

property.sample(interval)property.sample(interval)

creates an EventStream by sampling the
property value at given interval (in millis‐
econds)

property.sampledBy(stream)property.sampledBy(stream)

creates an EventStream by sampling the
property value at each event from the
given stream. The result EventStream
will contain the property value at each
event in the source stream.

Property (cont)Property (cont)

property.sampledBy(property)property.sampledBy(property)

creates a Property by sampling the
property value at each event from the
given property. The result Property will
contain the property value at each event
in the source property.

property.sampledBy(streamOrProperty, f)property.sampledBy(streamOrProperty, f)

samples the property on stream events.
The result values will be formed using
the given function f(propertyValue,
samplerValue). You can use a method
name (such as ".concat") instead of a
function too.

property.skipDuplicates(property.skipDuplicates([isEqual][isEqual]))

drops consecutive equal elements. So,
from [1, 2, 2, 1] you'd get [1, 2, 1]. Uses
the === operator for equality checking by
default. If the isEqual argument is
supplied, checks by calling isEqual(oldV‐
alue, newValue). The old name for this
method was "distinctUntilChanged".

property.changes()property.changes()

returns an EventStream of property value
changes. Returns exactly the same
events as the property itself, except any
Initial events. Note that property.cha‐
nges() does NOT skip duplicate values,
use .skipDuplicates() for that.

property.and(other)property.and(other)

combines properties with the &&
operator.

property.or(other)property.or(other)

combines properties with the || operator.

https://github.com/raimohanska/bacon.js?
utm_source=javascriptweekly&utm_mediu‐
m=email#property

Event TypesEvent Types

Bacon.EventBacon.Event

has subclasses Next, End, Error and
Initial

By ProLoserProLoser
cheatography.com/proloser/

Published 11th June, 2013.
Last updated 13th May, 2016.
Page 4 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#bus
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#property
http://www.cheatography.com/proloser/
https://apollopad.com

Bacon.js Cheat Sheet
by ProLoser via cheatography.com/1600/cs/1103/

Event Types (cont)Event Types (cont)

Bacon.NextBacon.Next

next value in an EventStream or a
Property. Call isNext() to distinguish a
Next event from other events.

Bacon.EndBacon.End

an end-of-stream event of EventStream
or Property. Call isEnd() to distinguish an
End from other events.

Bacon.ErrorBacon.Error

an error event. Call isError() to distin‐
guish these events in your subscriber, or
use onError to react to error events only.
errorEvent.error returns the associated
error object (usually string).

Bacon.InitialBacon.Initial

the initial (current) value of a Property.
Call isInitial() to distinguish from other
events. Only sent immediately after
subscription to a Property.

https://github.com/raimohanska/bacon.js?
utm_source=javascriptweekly&utm_mediu‐
m=email#event

Event MethodsEvent Methods

event.value()event.value()

returns the value associated with a Next
or Initial event

event.hasValue()event.hasValue()

returns true for events of type Initial and
Next

event.isNext()event.isNext()

true for Next events

event.isInitial()event.isInitial()

true for Initial events

event.isEnd()event.isEnd()

true for End events

https://github.com/raimohanska/bacon.js?
utm_source=javascriptweekly&utm_mediu‐
m=email#event

By ProLoserProLoser
cheatography.com/proloser/

Published 11th June, 2013.
Last updated 13th May, 2016.
Page 5 of 5.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/proloser/
http://www.cheatography.com/proloser/cheat-sheets/bacon-js
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#event
https://github.com/raimohanska/bacon.js?utm_source=javascriptweekly&utm_medium=email#event
http://www.cheatography.com/proloser/
https://apollopad.com

	Bacon.js Cheat Sheet - Page 1
	Observable Interface

	Bacon.js Cheat Sheet - Page 2
	Bacon.js Cheat Sheet - Page 3
	EventStream
	Bus

	Bacon.js Cheat Sheet - Page 4
	Property
	Event Types

	Bacon.js Cheat Sheet - Page 5
	Event Methods

