12 chem unit 2 Cheat Sheet by preyaaa via cheatography.com/139280/cs/29432/ | Resonance Structures | | |---|---| | Equivalent resonance
structures contain the
same number of single or
multiple bonds and each
atom ahs the same formal
charge | The best resonance structure has the following criteria: | | Non-equivalent resonance
structures have different
numbers of bonds and
different formal charge
distribution | 1. Smaller
formal
charges (+ or
-) are
preferred over
larger ones | | Formal charge = # of
valence electrons - (#
bonded electrons + lone
pairs) | 2. Like formal
charges on
adjacent
atoms are not
desirable | | Overall charge = sum of formal charges | 3. Negative
formal
charges
should reside
on a more
electrone-
gative atom | | Hybridization | | |---|--| | Atomic orbitals overlap
to form a new orbital
with a pair of opposite
spin electrons. This is
valence bond theory | Sigma bonds
are the first
single bonds
between 2
atoms | | Hybrid orbitals can be determined by the VSEPR structure of a molecule, or by looking at the total # of electron groups | Pi bonds are the
second or third
bonds between
2 atoms | | Partially filled orbitals in
the hybridized orbitals
represent single bonds | Unhybridized p
orbitals
represent Pi
bonds | | Filled orbitals represent lone pairs | To create equal
orbitals, you
may have to
promote an ns
electron to a np
electron | | Partially filled s and p orbitals can overlap to share electrons | | | Intermolecular Forces (co | ont) | |--|--| | Intermolecular forces
occur between
molecules and are
weaker forces | London dispersion forces are caused when an instantaneous dipole attracts another instan- taneous dipole | | The strength of an intermolecular force is dependent on the size of the molecule, the surface area of the molecule, and the polarity of the molecule | Created by the constant movement of molecules | | Dipole-dipole forces
exist in all polar
molecules | London dispersion forces are the weakest IMF | | A permanent dipole
exists in polar
molecules due to the
difference in electrone-
gativity of bonded
atoms | Hydrogen
bonding occurs
when hydrogen
bonds with N, F,
or O | | The positive end of one molecule will attract the negative end of another and vice versa | Hydrogen bonds
are very strong
IMF | | lon-dipole forces occur
between ions and polar
molcules | Stronger IMFs
lead to higher
boiling points
and lower
melting points | ## Intermolecular Forces Intramolecular forces occur within molecules and are strong forces London dispersion forces occur in all molecules and get stronger as the length of the molecule increases ## Intramolecular London dispersion forces forces occur occur in all molecules within and get stronger as the molecules and length of the molecule are strong increases forces ## C By preyaaa cheatography.com/preyaaa/ Published 13th October, 2021. Last updated 13th October, 2021. Page 1 of 1. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com