
C Exam Cheat Sheet
by prewd6 via cheatography.com/51151/cs/14045/

recursive functions, parameter
passing

recursive functions,

parameter passing

/*

* Recursive descent parser

for simple C expres sions.
* Very little error

checking.

*/

#include <st dio.h>
#include <st dli b.h>
int expr(v oid);
int mul_ex p(v oid);
int unary_ exp (void);
int primar y(v oid);
main(){

 int val;
 for (;;){
 pri ntf ("ex pr
e ssion: ");
 val =
expr();

 if(get char()
!= '\n'){

 pri n
tf ("er ror \n");
 whi l
e(get char() != '\n')
 ‐
 ; / NULL /
 } else{
 pri n
tf ("result is %d\n", val);
 }
 }
 exi t(E XIT _SU CCESS);
}

int

recursive functions, parameter
passing (cont)

expr(v oid){
 int val, ch_in;
 val = mul_exp();
 for (;;){
 swi tch (ch_in
= getcha r()){
 def ault:
 ung e
tc (ch _in ,st din);
 ret u
rn (val);
 case '+':
 val
= val + mul_exp();

 brea
k;

 case '-':
 val
= val - mul_exp();

 brea
k;

 }
 }
}

int

mul_ex p(v oid){
 int val, ch_in;
 val = unary_ exp();
 for (;;){
 swi tch (ch_in
= getcha r()){
 def ault:
 ung e
tc (ch_in, stdin);
 ret u
rn (val);
 case '*':
 val
= val * unary_ exp();
 brea
k;

 case '/':

recursive functions, parameter
passing (cont)

 val
= val / unary_ exp();
 brea
k;

 case '%':
 val
= val % unary_ exp();
 brea
k;

 }
 }
}

int

unary_ exp (void){
 int val, ch_in;
 swi tch (ch_in =
getcha r()){
 def ault:
 ung etc (ch_in
, stdin);

 val =
primary();

 break;
 case '+':
 val =
unary_ exp();
 break;
 case '-':
 val = -
unary _exp();
 break;
 }
 ret urn (val);
}

int

primar y(v oid){
 int val, ch_in;
 ch_in = getchar();
 if(ch_in >= '0' &&
ch_in <= '9'){

recursive functions, parameter
passing (cont)

 val = ch_in
- '0';

 goto out;
 }
 if(ch_in == '('){
 val =
expr();

 get char(); /
skip closing ')' /

 goto out;
 }
 pri ntf ("error:
primary read %d\n",

ch_in);

 exi t(E XIT _FA ILURE);
out:

 ret urn (val);
}

malloc() and free()

Malloc() is used to

allocate a certain amount

of memory during the

execution of a program. It

requests a block of memory

from the heap, if the

request is granted the

operating system will

reserve the amount of

memory. When the amount of

memory is not needed

anymore you must return it

to the operating system by

calling the free()

function.

#inclu de< std io.h >
int main()

By prewd6
cheatography.com/prewd6/

Not published yet.
Last updated 19th December, 2017.
Page 1 of 4.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

C Exam Cheat Sheet
by prewd6 via cheatography.com/51151/cs/14045/

malloc() and free() (cont)

{

int *ptr_one;

ptr_one = (int

*)mall oc(siz eof (int));
if (ptr_one == 0)

{

printf ("ERROR: Out of
memory \n");
return 1;

}

*ptr_one = 25;

printf ("%d \n", *ptr_one);
free(p tr_ one);
return 0;

}

The malloc statement will

ask of an amount of memory

with size of an integer

(32 bits or 4 bytes) If

there is not enough memory

available the malloc

function will return a

NULL If the request is

granted the address of the

reserved block will be

placed into the pointer

variable.

#inclu de< std io.h >
typedef struct rec

{

 int i;
 float PI;

malloc() and free() (cont)

 char A;
}RECORD;

int main()

{

 RECORD *ptr_one;
 ptr_one = (RECORD *)
malloc (sizeo f(R ECO RD));
 (*ptr_ one).i = 10;
 (*ptr_ one).PI = 3.14;
 (*ptr_ one).A = 'a';
 printf ("First value:
%d\n",(*pt r_o ne).i);
 printf ("Second value:
%f\n", (*ptr_ one).PI);
 printf ("Third value:
%c\n", (*ptr_ one).A);
 free(p tr_ one);
 return 0;
}

multiple inclusion protection

The basic use of header

files is to provide symbol

declarations for functions

and globals. Because

multiple declarations of a

given symbol in a single

translation unit are a

syntax error, you have to

defensively structure your

header files to not

redefine anything in case

they are included multiple

times.

multiple inclusion protection
(cont)

Keep in mind that you just

cannot prevent header

files from being included

more than once unless you

were to forbid header

files themselves from

including other header

files... and doing that

would be suboptimal at

best as we shall see in a

future post on self-

c ont ain ment.
Just follow this pattern

and encaps ulate the whole
contents of

the wh ole header file
within a guard:

#if

!defin ed(PRO JEC T_M ODU LE_H)
#define PROJEC T_M ODULE_H
... all header file

contents go here ...

#endif /

!defin ed(PRO JEC T_M ODU LE_H)

/

multiple inclusion protection
(cont)

properly scope the guard

names. These names must be

unique within your project

and within any project

that may ever include

them. Therefore, it is

good practice to always

prefix your guard names

with the name of your

project and follow them by

the name of the module.

Compil ers ex pec t the
structure above in order

to apply optimi zations
against multiple

inclusions of a single

file. If you break the

pattern, you can

unknow ingly incur higher
build times.

The exception

As with any rule there is

an exception: not all

header files can safely be

included more than once.

If a header file defines a

static symbol or helper

function, you have to

ensure that it is not

pulled in from more than

one place.

By prewd6
cheatography.com/prewd6/

Not published yet.
Last updated 19th December, 2017.
Page 2 of 4.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

C Exam Cheat Sheet
by prewd6 via cheatography.com/51151/cs/14045/

multiple inclusion protection
(cont)

Yes, the compiler would

detect this on its own

but, for readab ility
purposes, your header file

should explicitly state

this fact. Use this other

pattern instead:

#if

define d(P ROJ ECT _MO DULE_H)
#error "Must only be

included once and only

from .c files"

#endif

#define PROJEC T_M ODULE_H
... all header file

contents go here ...

multiple inclusion protection
(cont)

But when can this happen?

Very rarely, really. A

specific case of the above

would be a header file

providing helper functions

for testing, both their

defini tions and their
implem ent ation.
Theore tic ally, you could
split the two into a

tradit ional header file
and a source file, compile

them separately and link

them together with each

test program you write.

However, doing so may

complicate your build

unnece ssa rily.

comparator functions

Standard C library

provides qsort() that can

be used for sorting an

array. As the name

suggests, the function

uses QuickSort algorithm

to sort the given array.

Following is prototype of

qsort()

void qsort (void* base,

size_t num, size_t size,

 int
(comp ara tor)(const

void, const void*));

comparator functions (cont)

The key point about

qsort() is comparator

functi on com par ator. The
comparator function takes

two arguments and contains

logic to decide their

relative order in sorted

output. The idea is to

provide flexib ility so
that qsort() can be used

for any type (including

user defined types) and

can be used to obtain any

desired order

(incre asing, decreasing or
any other).

The comparator function

takes two pointers as

arguments (both type-

c asted to const void*) and
defines the order of the

elements by returning (in

a stable and transitive

manner

int compar ato r(const void
p, const void q)

{

 int l = ((struct

Student *)p)-> marks;
 int r = ((struct

Student *)q)-> marks;
 return (l - r);

}

comparator functions (cont)

// This function is used

in qsort to decide the

relative order

// of elements at

addresses p and q.

int compar ato r(const void
p, const void q)

{

 // Get the values at

given addresses

 int l = (const int)p;

 int r = (const int)q;

 // both odd, put the

greater of two first.

 if ((l&1) && (r&1))

 r eturn (r-l);

 // both even, put the

smaller of two first

 if (!(l&1) && !(r&1)

)

 r eturn (l-r);

 // l is even, put r

first

By prewd6
cheatography.com/prewd6/

Not published yet.
Last updated 19th December, 2017.
Page 3 of 4.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

C Exam Cheat Sheet
by prewd6 via cheatography.com/51151/cs/14045/

comparator functions (cont)

 if (!(l&1))

 r eturn 1;

 // l is odd, put l

first

 return -1;

}

// A utility function to

print an array

void printA rr(int arr[],
int n)

{

 int i;

 for (i = 0; i < n;

++i)

 p rin tf("%d ",
arr[i]);

}

// Driver program to test

above function

int main()

{

 int arr[] = {1, 6, 5,

2, 3, 9, 4, 7, 8};

 int size =

sizeof (arr) /
sizeof (ar r[0]);
 qs ort ((v oid *)arr,
size, sizeof (ar r[0]),
compar ator);

comparator functions (cont)

 pr int f("O utput array
is\n");

 pr int Arr (arr, size);

 return 0;

}

Output:

Output array is

9 7 5 3 1 2 4 6 8

unions

#include <stdio.h>

#include <st rin g.h>

union Data {

 int i;
 float f;
 char str[20];
};

int main() {

 union Data data;
 printf(" Memory size
occupied by data : %d\n",

sizeof (da ta));
 return 0;
} // returns: Memory size

occupied by data : 20

unions (cont)

To access any member of a

union, we use the member

access operator (.). The

member access operator is

coded as a period between

the union variable name

and the union member that

we wish to access. You

would use the

keywor d u nion to define
variables of union type.

The following example

shows how to use unions in

a program −

#include <st dio.h>
#include <st rin g.h>
union Data {

 int i;
 float f;
 char str[20];
};

int main() {

 union Data data;
 data.i = 10;
 data.f = 220.5;
 strcpy(data.str, "C
Progra mmi ng");
 printf(" data.i :
%d\n", data.i);

 printf(" data.f :
%f\n", data.f);

 printf(" dat a.str :
%s\n", data.str);

unions (cont)

 return 0;
}//returns the following:

data.i : 1917853763

//data.f :

412236 058 032 779 486 045 275 99
9 436 8.0 00000
//data.str : C

Progra mming

By prewd6
cheatography.com/prewd6/

Not published yet.
Last updated 19th December, 2017.
Page 4 of 4.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

	C Exam Cheat Sheet - Page 1
	recursive functions, parameter passing
	malloc() and free()

	C Exam Cheat Sheet - Page 2
	multiple inclusion protection

	C Exam Cheat Sheet - Page 3
	comparator functions

	C Exam Cheat Sheet - Page 4
	unions

