recursive functions, parameter

passing

recursive functions,
parameter passing

/*

* Recursive descent parser
for simple C expressions.
* Very little error
checking.

=

#include <stdio.h>
#include <stdlib.h>

int expr (void) ;

int mul_exp (void) ;

int unary_exp (void) ;

int primary (void) ;

main () {
int val;
for(;;){
printf ("expr
ession: ");
val =
expr () ;
if (getchar ()
'= "\n'){
prin
tf ("error\n") ;
whil
e(getchar() != '\n"')
; / NULL /
} else{
prin
tf ("result is %d\n", val);

}
}

exit (EXIT_SUCCESS) ;

int

By prewd6

cheatography.com/prewd6é/

C Exam Cheat Sheet

by prewd6 via cheatography.com/51151/cs/14045/

recursive functions, parameter

passing (cont)

expr (void) {

int val, ch_in;
val = mul_exp();
for (;;) {

switch (ch_in
= getchar()) {
default:
unge

tc(ch_in,stdin) ;

retu
rn(val) ;
case '+':
val
= val + mul_exp();
brea
k;
case '-':
val
= val - mul_exp();
brea
k;
}
}
}
int

mul_exp (void) {

int val, ch_in;
val = unary_exp() ;
for (;;) {

switch (ch_in

= getchar()) {

default:
unge
tc(ch_in, stdin);
retu
rn(val) ;
CRISEREEEE
val

= val * unary_exp();

brea

case '/':

recursive functions, parameter

passing (cont)

val
= val / unary_exp();
brea
k;
case '%'
val
= val % unary_exp();
brea
k;
}
}
}
int

unary_exp (void) {
int val, ch_in;
switch(ch_in =
getchar()) {
default:

ungetc (ch_in

, stdin) ;
val =
primary () ;
break;
case '+':
val =
unary_exp () ;
break;
case '-':
val = -
unary_exp () ;
break;

}
return(val) ;
}
int
primary (void) {
int val, ch_in;
ch_in = getchar() ;
if (ch_in >= '0' &&

ch_in <= '9") {

Not published yet.

Page 1 of 4.

Last updated 19th December, 2017.

recursive functions, parameter

passing (cont)

val = ch_in
- IOI,
goto out;
}
if (ch_in == ' (') {
val =
expr () ;
getchar(); /

skip closing ')' /
goto out;

}

printf ("error:
primary read %d\n",
ch_in);

exit (EXIT_ FAILURE) ;
out:

return (val) ;

malloc() and free()

I

Malloc() is used to
allocate a certain amount
of memory during the
execution of a program. It
requests a block of memory
from the heap, if the
request is granted the
operating system will
reserve the amount of
memory. When the amount of
memory is not needed
anymore you must return it
to the operating system by
calling the free()
function.

#include<stdio.h>

int main ()

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

Cheatography

{

malloc() and free() (cont)

int *ptr_one;
ptr_one = (int
*)malloc (sizeof (int)) ;
if (ptr_one == 0)
{
printf ("ERROR: Out of
memory\n") ;
return 1;
}
*ptr_one = 25;
printf ("%d\n", *ptr_one) ;
free(ptr_one) ;
return 0;
}
The malloc statement will
ask of an amount of memory
with size of an integer
(32 bits or 4 bytes) If
there is not enough memory
available the malloc
function will return a
NULL If the request is
granted the address of the
reserved block will be
placed into the pointer
variable.
#include<stdio.h>
typedef struct rec
{

int 1i;

float PI;

C Exam Cheat Sheet

by prewd6 via cheatography.com/51151/cs/14045/

malloc() and free() (cont)

char A;
}RECORD;
int main ()
{
RECORD *ptr_one;
ptr_one = (RECORD ¥*)
malloc (sizeof (RECORD)) ;
(*ptr_one) .i = 10;
(*ptr_one) .PI = 3.14;
(*ptr_one) .A = 'a';
printf ("First value:
%d\n", (*ptr_one) .1) ;
printf ("Second value:
%f\n", (*ptr_one) .PI);
printf ("Third value:
%c\n", (*ptr_one) .A);

free(ptr_one) ;

return 0;

By prewd6

cheatography.com/prewd6é/

}
multiple inclusion protection

The basic use of header
files is to provide symbol
declarations for functions
and globals. Because
multiple declarations of a
given symbol in a single
translation unit are a
syntax error, you have to
defensively structure your
header files to not
redefine anything in case
they are included multiple

times.

multiple inclusion protection

(cont)

Keep in mind that you just
cannot prevent header
files from being included
more than once unless you
were to forbid header
files themselves from
including other header
files... and doing that
would be suboptimal at
best as we shall see in a
future post on self-
containment.
Just follow this pattern
and encapsulate the whole
contents of
the whole header file
within a guard:
#if
!defined (PROJECT MODULE_H)
#define PROJECT MODULE_H
all header file
contents go here
#endif /
!defined (PROJECT_MODULE_H)
/

Not published yet.

Page 2 of 4.

Last updated 19th December, 2017.

multiple inclusion protection

(cont)

properly scope the guard
names. These names must be
unique within your project
and within any project
that may ever include
them. Therefore, it is
good practice to always
prefix your guard names
with the name of your
project and follow them by
the name of the module.
Compilers expect the
structure above in order
to apply optimizations
against multiple
inclusions of a single
file. If you break the
pattern, you can
unknowingly incur higher
build times.

The exception

As with any rule there is
an exception: not all
header files can safely be
included more than once.
If a header file defines a
static symbol or helper
function, you have to
ensure that it is not

pulled in from more than

one place.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

Cheatography

multiple inclusion protection
(cont)

Yes, the compiler would

detect this on its own

but, for readability

purposes, your header file

should explicitly state

this fact. Use this other

pattern instead:

#if

defined (PROJECT_MODULE_H)

#error "Must only be

included once and only

from .c files"

#endif

#define PROJECT MODULE_H
all header file

contents go here

By prewd6

cheatography.com/prewd6é/

C Exam Cheat Sheet

by prewd6 via cheatography.com/51151/cs/14045/

multiple inclusion protection

(cont)

But when can this happen?
Very rarely, really. A
specific case of the above
would be a header file
providing helper functions
for testing, both their
definitions and their
implementation.
Theoretically, you could
split the two into a
traditional header file
and a source file, compile
them separately and link
them together with each
test program you write.
However, doing so may

complicate your build

unnecessarily.

comparator functions

Standard C library
provides gsort () that can
be used for sorting an
array. As the name
suggests, the function
uses QuickSort algorithm
to sort the given array.
Following is prototype of
gsort ()

void gsort (void* base,
size_t num, size_t size,
int
(comparator) (const

void,const void*)) ;

Not published yet.

Page 3 of 4.

Last updated 19th December, 2017.

comparator functions (cont)

The key point about
gsort () is comparator
function comparator. The
comparator function takes
two arguments and contains
logic to decide their
relative order in sorted
output. The idea is to
provide flexibility so
that gsort() can be used
for any type (including
user defined types) and
can be used to obtain any
desired order
(increasing, decreasing or
any other) .
The comparator function
takes two pointers as
arguments (both type-
casted to const void*) and
defines the order of the
elements by returning (in
a stable and transitive
manner
int comparator (const void
p, const void q)
{

int 1 = ((struct
Student *)p) ->marks;

int r = ((struct
Student *)q) ->marks;

return (1 - r);

comparator functions (cont)

// This function is used
in gsort to decide the
relative order
// of elements at
addresses p and g.
int comparator (const void
p, const void q)
{

// Get the values at
given addresses

int 1 = (const int)p;
int r = (const int)q;

// both odd, put the
greater of two first.

if ((l&l) && (r&l))
return (r-1);
// both even, put the

smaller of two first

if (! (l&l) && ! (r&l)
)
return (1l-r);
// 1 is even, put r

first

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

Cheatography

comparator functions (cont) comparator functions (cont)

C Exam Cheat Sheet

by prewd6 via cheatography.com/51151/cs/14045/

IIHHHHHIHHHI!IIIIIIIIIIIIII'

unions (cont)

if (! (1&l)) To access any member of a return 0;
return 1; printf ("Output array union, we use the member }//returns the following:
is\n"); access operator (.). The data.i 1917853763
// 1 is odd, put 1 printArr (arr, size); member access operator is //data.f

first

coded as a period between

41223605803277948604527599

return -1; return 0; the union variable name 94368.000000
} } and the union member that //data.str : C
Output: we wish to access. You Programming

// A utility function to
print an array

void printArr (int arr([],

e _ e f011OWing Sxampie
) . shows how to use unions in
! #include <stdio.h>
int 1i; i . a program —
#include <string.h> PRy
for (i = 0; 1 < n; #include <stdio.h>
++1) . #include <string.h>
union Data {
printf ("%d ", . X union Data {
int 1;
arr[i]); int 1i;
(1) float £;
} float £;

// Driver program to test

above function

Output array is

9 753124638

char str[20];
15
int main() {

union Data data;

would use the
keyword union to define

variables of union type.

char str[20];
1

int main() {

int main () . . union Data data;
printf ("Memory size
data.i = 10;
t occupied by data %d\n", ata-t
int = {1, 6, 5, . data.f = 220.5;
int arr] ¢ sizeof (data)) ; ata
2, 3, 9, 4, 7, 8%}; strcpy (data.str, "C
return 0;
P 1 n ;
} // returns: Memory size rogramming")
int i = intf "data.i
tht size occupied by data 20 printf (ata-t
sizeof (arr) / %d\n", data.i);
sizeof (arr[0]) ; printf ("data.f
gsort ((void*)arr, %f\n", data.f);
size, sizeof (arr[0]), printf ("data.str
comparator) ; %s\n", data.str);

By prewd6

Not published yet.

Sponsored by Readability-Score.com

Last updated 19th December, 2017.
Page 4 of 4.

cheatography.com/prewd6é/ Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/prewd6/
http://www.cheatography.com/prewd6/cheat-sheets/c-exam
http://www.cheatography.com/prewd6/
https://readability-score.com

	C Exam Cheat Sheet - Page 1
	recursive functions, parameter passing
	malloc() and free()

	C Exam Cheat Sheet - Page 2
	multiple inclusion protection

	C Exam Cheat Sheet - Page 3
	comparator functions

	C Exam Cheat Sheet - Page 4
	unions

