
Ruby Essentials Cheat Sheet
by pixelus via cheatography.com/125267/cs/24072/

Genera lities

Everything in Ruby is an object.

A method always return exactly one single thing (an object).

We can use do and end inplace of { }.

Create a comment with #.

Printing Data

print "string" print data to the screen without adding a new line at
the end

puts "string" print data to the screen and add an automatic new line

p "string" print data to the screen with a new line and give
inform ation on type of data

Special Characters

\n add a new line

\t add a tabulation

Conver sions

string.split(" ") convert a string into an array

array.join(" ") convert an array into a string

string.to_i convert a string to an integer

element.to_s convert an element to a string

element.to_a convert an element to an array

num.to_f convert an integer to a float

Ranges

(start..end).each { |ele| … } specify a range of numbers including
end

(start...end).each { |ele| … } specify a range of numbers excluding
end

Iterators

number.times {…} repeat a block a number
of times

array.each { |ele| ... } iterate over element of
an array

array.e ac h_w ith _index { |ele, i| ... } iterate over elements of
an array with index

string.ea ch_char { |char| ... } iterate over characters of
a string

string.ea ch_ cha r.w ith _index { |char, i| ... } iterate over characters of
a string with index

Iterators (cont)

hash.each { |key, val| ... } iterate over elements of a hash

hash.e ach_key { |key| ... } iterate over keys of a hash

hash.e ach _value { |val| ... } iterate over values of a hash

element.inject { |acc, el| acc + el } return the value for the method
where each element of the block
is passed in an accumu lator
value and the current element

Arrays

array.push add element(s) to the end of an array

array.unshift add element(s) to the front of an array

array.pop remove the last element of an array

array.shift remove the first element of an array

array.include?() check if an element exists in an array

array.index find the index of an element in an array

Objects

element.is_a? (Object) return true if class is the class of
Object, or if class is one of the
superc lasses of Object or modules
included in Object

element.object_id return the memory address of some
data

prc = Proc.new { |ele| ele * 2 } proc, an object that contains a block
and allow to save blocks to variables

p prc.call(5) call the proc and evaluate to the last
line of code executed within the
block

By pixelus
cheatography.com/pixelus/

Not published yet.
Last updated 25th August, 2020.
Page 1 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/pixelus/
http://www.cheatography.com/pixelus/cheat-sheets/ruby-essentials
http://www.cheatography.com/pixelus/
http://crosswordcheats.com

Ruby Essentials Cheat Sheet
by pixelus via cheatography.com/125267/cs/24072/

Objects (cont)

&prc convert a block into a proc or convert a
proc into a block, & in the parameters for a
method definition will convert a block to a
proc, & in the arguments for a method call
will convert a proc to a block

obj.instance_of? Class return true if obj is an instance of the given
class

If we don't intend to mutate a string, we can use a symbol to
save some memory because a symbol value will be stored in
exactly one memory location. So they are often used to act as
unique identi fie rs.

Enumer ables

array.all? { |ele| … } return true when all elements result in true

array.any? { |ele| … } return true when at least one element result
in true

array.none? { |ele| … } return true when no element result in true

array.one? { |ele| … } return true when exactly one element result
in true

array.map { |ele| ... } return a new array containing the values
returned by the block

array.sum return the total sum of all elements

array.min return the minimum element

array.max return the maximum element

array.flatten return the 1 dimens ional version of any
multid ime nsional array

array.select return an array containing all elements of
enum for which the given block returns a
true value

element.length return a number repres enting the length of
the element

element.count return a number repres enting the count of
elements that result in true

element.last return the last element of a string or an
array

Enumer ables (cont)

element.last(num) return a substring from the end of the string until
it reaches the num value (counting backwa rds),
or return a copy if the given limit is greater than
or equal to the string length

num.even? return true if the number is even

num.odd? return true if the number is odd

Inpout / Output

require File import File when gems are involved

require_relative File import File with a path to another ruby file

element = gets allow a user to give input and add a newline
character at the end

Scope

$message = "something" create a global variable, everywhere
area in the code can access the global
scope

$PROGRAM_NAME global variable, string describing the
name of the program

$stdin global variable that holds a stream for
the standard input

$stdout global variable which holds the standard
output stream

CONSTANT constant variable, cannot be reassigned
and begin the name with a capital letter

Strings

string.downcase return a copy of str with all downcase letters

string.upcase return a copy of str with all uppercase letters

string.c ap italize return a copy of str with the first character
converted to uppercase

string.reverse return a new string with the characters in reverse
order

string.chomp remove the last character if it's a newline or
carriage return

By pixelus
cheatography.com/pixelus/

Not published yet.
Last updated 25th August, 2020.
Page 2 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/pixelus/
http://www.cheatography.com/pixelus/cheat-sheets/ruby-essentials
http://www.cheatography.com/pixelus/
http://crosswordcheats.com

Ruby Essentials Cheat Sheet
by pixelus via cheatography.com/125267/cs/24072/

Strings (cont)

string.index (po sition) return the character in the specified position

Hashes

hash = Hash.new OR hash = {} create a new hash

hash = Hash.new(...) create a new hash with a default
value

Hash.new { |h, k| h[k] = [] } create a new hash and define
default value as an array

hash[key] return value of the hash key

hash.has_key?() check if a key exists in a hash

hash.has_value?() check if a value exists in a hash

hash.sort_by {|k, v| v} return the value in ascending order
in a new array

hash.sort_by {|k, v| -v} return the value in descending
order in a new array

hash.sort_by {|k, v| [-v, k]} sort the hash by the values in
descending order and sort it by
letter’s alphab etical order in a new
array

{ |a, b| a.to_s <=> b.to_s } sort the numbers alphab eti cally by
characters

Symbols

&:symbol turn the symbol into a simple proc,
equivalent to: elemen t.m ethod {
|ele| ele.sy mbo l_m ethod }

hash = {:k1 => “v1”, :k2=> “v2”} initia lizing a hash with symbol keys
allows to drop the rocket (=>) and
move the colon (:) to the right of the
symbol

Symbols are immutable and can never been changed.
If we don't intend to mutate a string, we can use a symbol to
save some memory because a symbol value will be stored in
exactly one memory location. So they are often used to act as
unique identi fie rs.

Operators

def method(arg_1, arg_2, *other_args) accept additional
arguments and stock them
into an array

method(*array) pass an array into a
function expecting multiple
arguments

method(**hash) pass a hash into a function
expecting multiple
arguments

array = [*arr_1, element, *arr_2] decompose an array into
individual items where each
individual element become
an argument

hash = [*some_hash, symbol: value] decompose a hash into
individual items where each
individual element become
an argument, only work
with hashes where the keys
are symbols

element_1 <=> element_2 compare two values and
return -1, 0, or 1

a ||= b assign b to a iff a is nil or
false

a &&= b assign b to a if a is true or
not nil

Class

initialize put define default argument

@variable d inside #initi ali zei nstance variable or
attribute of class, typically assigned inside
#initi alize, changing the variable will only
effect that one instance

@@variable class variable, typically assigned inside of
the class, but not inside of #initi alize,
changing the variable will effect all instances
because all instances of the class

CLASS_CONSTANT class constant, will be shared among all
instances of a class, but cannot be changed

attr_r eader instance variable getter

attr_writer instance variable setter

attr_a ccesor instance variable getter and setter

By pixelus
cheatography.com/pixelus/

Not published yet.
Last updated 25th August, 2020.
Page 3 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/pixelus/
http://www.cheatography.com/pixelus/cheat-sheets/ruby-essentials
http://www.cheatography.com/pixelus/
http://crosswordcheats.com

Ruby Essentials Cheat Sheet
by pixelus via cheatography.com/125267/cs/24072/

Class (cont)

Class.new create a new anonymous (unnamed) class

def method instance method we can only call it on a Class
instance we initia lized using Class.new,
instance method depends on the attributes or
instance variables of an instance

def self.method class method called directly on the class, self
refers to the Class itself and cannot refer to
any instance attributes like @variable
(Class ::m ethod)

Queue.new create a queue, process work in FIFO (first -in -
fi rst -out) order

Class::CONSTANT access to the constant inside the class

To create a class we use the class keyword.
The name of a class must begin with a capital letter.
We can define methods within a class.

Syntactic Sugar

el_1.==(el_2) equivalent to: el_1 == el_2

element.[](num) equivalent to: elemen t[num]

el.[]=(num, string) equivalent to: el[num] = string

Debugging with Byebug

require "byebug" add to the top of your file to
gain access to the gem

debugger place this line at a point in your
file where you want to begin
debugger mode

l <start line>-<end line> list the line numbers in the
specified range

step OR s step into the method call on
the current line, once
execution is paused on a line
containing a method call

next OR n move to the next line of
executed code

break <line num> OR b <line num> place a breakpoint at the
specified line number, this will
pause execution

continue OR c resume normal execution of
the code until a breakpoint

display <variable> automa tically show the current
value of a variable

Testing with Rspec

describe name the method being tested

it expresse the expected behavior
of the method being tested

expect show how that behavior is tested

context additional blocks to outline
different scenarios that code is
expected to satisfy

Class#method refers to the instance method in
the class

Class.method OR Class::method refers to the class method in the
class

To use RSpec, we need to separate our implem ent ation code
files from the testing files using a /lib and /spec folder respec ‐
tiv ely.

/examp le_ project
├── lib
│ ├── add.rb
│ └── prime.rb
└── spec
├── add_sp ec.rb
└── prime_ spec.rb

Exceptions

begin...rescue...end react to an exception, the code in the begin
block will execute until an exception is
reached, once an exception is reached, the
execution will immedi ately jump to rescue

raise bring up an exception, flag an except ional
scenario that should be handled in a specific
way

By pixelus
cheatography.com/pixelus/

Not published yet.
Last updated 25th August, 2020.
Page 4 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/pixelus/
http://www.cheatography.com/pixelus/cheat-sheets/ruby-essentials
http://www.cheatography.com/pixelus/
http://crosswordcheats.com

	Ruby Essentials Cheat Sheet - Page 1
	Generalities
	Printing Data
	Arrays
	Special Characters
	Conversions
	Objects
	Ranges
	Iterators

	Ruby Essentials Cheat Sheet - Page 2
	Inpout / Output
	Enumerables
	Scope
	Strings

	Ruby Essentials Cheat Sheet - Page 3
	Operators
	Hashes
	Symbols
	Class

	Ruby Essentials Cheat Sheet - Page 4
	Testing with Rspec
	Syntactic Sugar
	Debugging with Byebug
	Exceptions

