Cardiac Muscle Cheat Sheet by piigmy via cheatography.com/213581/cs/46487/ | Intro | | |---------------------------------|--| | Myocardium | middle of heart wall, contains cardiac muscle | | How are CM cells connected? | intercalated discs, forms
desmosomes and gap-ju-
nctions | | Functional
Syncytium | group of CM cells that
contract in coordination with
each other (gap junctions) | | Autorhyth-
micity | creates its own electrical activity (no NS input) | | Pacemaker
Cells | creates pacemaker activity, grouped together in nodes | | Cardiac
Contractile
Cells | 99% of cardiac muscle cells, actually performs contraction but is not autorhythmic | | Other
Character-
istics | involuntary (autonomic neuro
fibers), striated, lots of mito +
myoglobin, longer AP than
smooth/skeletal muscle | | Pacemake | r Flow | |----------------------------|---| | SA Node | 70 APs/min, main node | | Where is SA node? | right atrium near superior vena cava | | AV Node | 50 APs/min, follows SA node | | Where is AV node? | base of right atrium | | Bundle of
His | tract of pacemaker cells that
start at AV node -> ends at left
and right ventricles | | Purkinje
Fibers | 30 APs/min, follows SA node | | Where are Purkinje Fibers? | from end of Bundle of His
through ventricular
myocardium | | Interatrial
Pathway | pacemaker pathway from right to left atrium | | Pacemaker F | low (cont) | |---|---| | Internodal
Pathway | pacemaker pathway from SA node to AV node | | AV Nodal
Delay | activity delay of 100ms going through AV node | | Why is AV
Nodal Delay
important? | allows for ventricles to contract after atrial contraction | | Pacemaker A | activity | | Nodes | controls rate and coordination of contractions | | How many nodes? | 2 nodes, SA and AV | | Pacemaker potentials | depolarization of membrane potential until threshold (triggers AP) | | First half of pacemaker potential | funny channels open -> Na+
in, K+ channels close (K+
remains inside) | | Second
half of
pacemaker
potential | funny channels close, T-type
Ca2+ channels open -> takes
potential to threshold | | Threshold | T-type Ca2+ channels close,
L-type Ca2+ channels open -
> potential reaches peak | | Falling
Phase | K+ channels open (K+ out),
L-type Ca2+ channels close -
-> fall back to original
potential | | Major ions
for
pacemaker
activity | K+, Na+, Ca2+ | | Timing | both Ca2+ channels are crucial for keeping rhythm (T- | | Pacemaker Activity (cont) | | |---|--------------------| | Pacemaker potential value | -60mV | | Excitation Pathway | | | Interatrial pathway | | | SA node | AV node | | Right atrium | Left atrium | | Interatrial pathway | Bundle
of His | | Electrically nonconductive fibrous tissue | Left ventricle | | Right ventricle | Purkinje
fibers | | Contractile Cardiac Muscle Cells | | | |--|---|--| | Resting potential value | -90mV | | | Rapid
rise | opening fast Na+ channels,
Na+ in | | | Brief
repola-
rization | limited K+ efflux, coupled with inactivation of Na+ channel | | | Plateau
Phase | Ca2+ entry (opens L-type channels), coupled with reduced K+ efflux (K+ channels close) | | | Rapid falling | opening ordinary voltage-gated
K+ channels (K+ out) | | | Resting potential | back to resting potential by
closing ordinary K+ channels
and opening leaky K+ channels | | | AP and
Contra-
ctile
response | contraction happens during plateau phase | | ## AP in a Pacemaker Cell AP in a Cardiac Cell (Fig. 1) Point By **piigmy** cheatography.com/piigmy/ Not published yet. Last updated 27th May, 2025. Page 1 of 2. type channels: gradual depolarization) depolarization, L-type: fast Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com ## Cardiac Muscle Cheat Sheet by piigmy via cheatography.com/213581/cs/46487/ ## **Excitation-Contraction Coupling** Dyhydr- acts like voltage-gated Ca2+ opyridine channels. When AP reaches receptors T-tubules, these receptors activate and allows Ca2+ flow Sarcop- entry of Ca2+ causes calcium lasmic release from Sarcoplasmic Reticulum Reticulum Contra- number of activated cross-ction bridges is proportional to Ca2+ conc. in cytosol Calcium-I- opening of L-type Ca2+ nduced channels -> activation of Calcium- dyhydropyridine receptors -> Release amplified release of Ca2+ from sarcoplasmic reticulum Refractory refractory period and length/stPeriod rength of contraction is directly and proportional (longer refractory Contraction rength increases) By **piigmy** cheatography.com/piigmy/ Not published yet. Last updated 27th May, 2025. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com