

Cardiac Muscle Cheat Sheet

by piigmy via cheatography.com/213581/cs/46487/

Intro	
Myocardium	middle of heart wall, contains cardiac muscle
How are CM cells connected?	intercalated discs, forms desmosomes and gap-ju- nctions
Functional Syncytium	group of CM cells that contract in coordination with each other (gap junctions)
Autorhyth- micity	creates its own electrical activity (no NS input)
Pacemaker Cells	creates pacemaker activity, grouped together in nodes
Cardiac Contractile Cells	99% of cardiac muscle cells, actually performs contraction but is not autorhythmic
Other Character- istics	involuntary (autonomic neuro fibers), striated, lots of mito + myoglobin, longer AP than smooth/skeletal muscle

Pacemake	r Flow
SA Node	70 APs/min, main node
Where is SA node?	right atrium near superior vena cava
AV Node	50 APs/min, follows SA node
Where is AV node?	base of right atrium
Bundle of His	tract of pacemaker cells that start at AV node -> ends at left and right ventricles
Purkinje Fibers	30 APs/min, follows SA node
Where are Purkinje Fibers?	from end of Bundle of His through ventricular myocardium
Interatrial Pathway	pacemaker pathway from right to left atrium

Pacemaker F	low (cont)
Internodal Pathway	pacemaker pathway from SA node to AV node
AV Nodal Delay	activity delay of 100ms going through AV node
Why is AV Nodal Delay important?	allows for ventricles to contract after atrial contraction
Pacemaker A	activity
Nodes	controls rate and coordination of contractions
How many nodes?	2 nodes, SA and AV
Pacemaker potentials	depolarization of membrane potential until threshold (triggers AP)
First half of pacemaker potential	funny channels open -> Na+ in, K+ channels close (K+ remains inside)
Second half of pacemaker potential	funny channels close, T-type Ca2+ channels open -> takes potential to threshold
Threshold	T-type Ca2+ channels close, L-type Ca2+ channels open - > potential reaches peak
Falling Phase	K+ channels open (K+ out), L-type Ca2+ channels close - -> fall back to original potential
Major ions for pacemaker activity	K+, Na+, Ca2+
Timing	both Ca2+ channels are crucial for keeping rhythm (T-

Pacemaker Activity (cont)	
Pacemaker potential value	-60mV
Excitation Pathway	
Interatrial pathway	
SA node	AV node
Right atrium	Left atrium
Interatrial pathway	Bundle of His
Electrically nonconductive fibrous tissue	Left ventricle
Right ventricle	Purkinje fibers

Contractile Cardiac Muscle Cells		
Resting potential value	-90mV	
Rapid rise	opening fast Na+ channels, Na+ in	
Brief repola- rization	limited K+ efflux, coupled with inactivation of Na+ channel	
Plateau Phase	Ca2+ entry (opens L-type channels), coupled with reduced K+ efflux (K+ channels close)	
Rapid falling	opening ordinary voltage-gated K+ channels (K+ out)	
Resting potential	back to resting potential by closing ordinary K+ channels and opening leaky K+ channels	
AP and Contra- ctile response	contraction happens during plateau phase	

AP in a Pacemaker Cell AP in a Cardiac Cell (Fig. 1) Point (Fig. 1) Point

By **piigmy** cheatography.com/piigmy/

Not published yet. Last updated 27th May, 2025. Page 1 of 2.

type channels: gradual

depolarization)

depolarization, L-type: fast

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cardiac Muscle Cheat Sheet by piigmy via cheatography.com/213581/cs/46487/

Excitation-Contraction Coupling

Dyhydr- acts like voltage-gated Ca2+
opyridine channels. When AP reaches
receptors T-tubules, these receptors
activate and allows Ca2+ flow
Sarcop- entry of Ca2+ causes calcium
lasmic release from Sarcoplasmic
Reticulum Reticulum

Contra- number of activated cross-ction bridges is proportional to Ca2+ conc. in cytosol

Calcium-I- opening of L-type Ca2+
nduced channels -> activation of
Calcium- dyhydropyridine receptors ->
Release amplified release of Ca2+ from
sarcoplasmic reticulum

Refractory refractory period and length/stPeriod rength of contraction is directly
and proportional (longer refractory
Contraction rength increases)

By **piigmy** cheatography.com/piigmy/

Not published yet. Last updated 27th May, 2025. Page 2 of 2. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com