Cheatography

Year 9 Mathematics Cheat Sheet by Phoebe Zhang (Phoebe12) via cheatography.com/30133/cs/16011/

Volur

Converting VOLUME Units

VOLUME consists of Cube Units, so we need to CUBE all our Lengths

x 100³

÷ 1003

VOLUME conversions use powers of 3, and usually create very large result 3m3 = ? cm3 Need to x 1003 3 x 100 x 100 x 100 = 3 000 000 cm3 y

Converting AREA Units AREA consists of Square Units, so we need to SQUARE all our Lengths

x 100²

÷ 100²

 5km^2 = ? m² Need to x 1000² $5 \times 1000 \times 1000 = 5\ 000\ 000\ \text{m}^2 \sqrt{}$ $1200 \text{ cm}^2 = ? \text{ m}^2$ Need to $\div 100^2$ $1200 \div 100 \div 100 = 0.12 \text{ m}^2 \sqrt{}$

Converting CAPACITY Units

The Volume of Liquids and Solids is usually measured as a "Capacity"

x 1000

÷1000

CAPACITY conversions use 1000's, and usually create fairly large resu 32ML = ? L Need to x 1000 twice 32 x 1000 x 1000 = 32 000 000 LV

In the Metric System, Capacity is based on the Litre or "L" unit

kL

m²

ured in cubes

mm³

x 10³

 $\div 10^{3}$

x 10²

÷ 10²

x 1000

÷1000

mL

mm²

cm²

cm³

VOLUME is how much 3D space is occupied, and is measured

.

m³

x 1000³

 $\div 1000^{3}$

x 1000²

÷ 1000²

x 1000

÷1000

Km²

Capacity

Km³

Inequalities

Laws of Indices and Surds

Law of Indices	Law of Surds
) $a^m \times a^n = a^{m+n}$	i) m a = a m
(i) $a^{m} = a^{m-n}$	ii) wab - wax wo
	all = all (III
$\frac{\sigma_{\infty}}{\sigma_{t}} = \frac{\sigma_{\infty}}{\sigma_{t}}$ (v	iv) (va) = a
$Vi) \alpha^{\circ} = 1$	V) mynja -myla
	VI $(Na)^m = Na^m$

Volume		
Cube	$V = s^3$	
Cuboid	V = lwh	
Prism	V = Bh	
Cylinder	$V = \pi r^2 h$	
Hollow Cylinder	$V = \pi R^2 h \text{-} \pi r^2 h$	
Cone	$V = 1/3^* \pi r^2 h$	
Pyramid	V = 1/3*Bh	
Sphere	$V = 4/3^*\pi r^3$	
Hemisphere	$V = 2/3^{*}\pi r^{3}$	

Surface Area		
Cube	$TSA = 6s^2$	
Cuboid	TSA = 2(lw + lh + wh)	
Prism	TSA = 2B + ph	
Cylinder	$TSA = 2\pi^2 + 2\pi rh$	
Hollow Cylinder	$\label{eq:TSA} \begin{split} TSA &= 2\pi r h + 2\pi R h + 2(\pi R^2 - \pi r^2) \end{split}$	
Cone	$TSA = \pi r^2 + \pi rs$	
Regular Pyramid	TSA = area of base + $1/2^*$ ps	
Square Pyramid	$TSA = b^2 = 2bs$	
Sphere	$TSA = 4\pi r^2$	
Hemisphere	$TSA = 3\pi r^2$	
B = area of base		

p = perimeter of base

h = height

R = radius of the outer surface

r = radius of the inner surface

s = slant height

b = length of the base

ML

By Phoebe Zhang (Phoebe12) cheatography.com/phoebe12/

Not published yet. Last updated 6th June, 2018. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

Cheatography

Year 9 Mathematics Cheat Sheet by Phoebe Zhang (Phoebe12) via cheatography.com/30133/cs/16011/

Chapter 4 Summary

The gradient of a horizontal line (y = ...) has a gradient of zero.

The gradient of a vertical line (x = ...) has an undefined gradient.

Perpendicular lines are at right angles. Their gradients m^1 and m^2 are such that m^1m^2 = -1, i.e. m^2 = -1 \div m^1

y = mx passes through the origin, substitute x = 1 to find another point.

By Phoebe Zhang (Phoebe12)

cheatography.com/phoebe12/

Not published yet. Last updated 6th June, 2018. Page 2 of 2.

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com