\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Phoebe Zhang (Phoebe12)} \pdfinfo{ /Title (electricity.pdf) /Creator (Cheatography) /Author (Phoebe Zhang (Phoebe12)) /Subject (Electricity Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{3A6A8A} \definecolor{LightBackground}{HTML}{F2F5F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Electricity Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Phoebe Zhang (Phoebe12)} via \textcolor{DarkBackground}{\uline{cheatography.com/30133/cs/15749/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Phoebe Zhang (Phoebe12) \\ \uline{cheatography.com/phoebe12} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 10th May, 2018.\\ Updated 10th May, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Flow of Electrons}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Electrons flow from the negative (-) terminal to the positive (+) terminal of a cell (e.g. a battery) Conventional current is positive charge flowing from the positive (+) terminal to the negative (-) terminal{]}} \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Current}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{It measures electron movement through space and time.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Current = how much charge (coulombs, {[}packets of electrons{]}) passes through a point in a circuit in an amount of time.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{This is also known as the rate of flow through an electric circuit, like a heart rate (beats per minute).} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{As electrons 'enter' a component in the circuit, the same number of electrons 'leave' the component} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.68298 cm} x{1.29402 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Notes:}} \tn % Row 0 \SetRowColor{LightBackground} 1 Coulomb (Q)/1 second (s) = & 1 Amp (A) \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1 Joule (J)/1 Coulomb (Q) = & 1 Volt (V) \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Glossary}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Load:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Converts electrical energy into another form e.g. light globe produces heat and light} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Direction:} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Electrons move from negative to positive end of a power source (i.e. repelled and attracted)} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Current:} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Rate of flow of electrons (i.e. number of coulombs of electrons passing a point in a circuit per second)} \tn % Row Count 10 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Voltage:} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Energy electrons gain from a power source and lose as they move around an electrical circuit} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Calculating current}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The size of an electric current shows the rate of flow of electric charge. You can calculate the size of a current using this equation:} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} current in amps = & \{\{ac\}\}charge in coulombs \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} & \{\{bt\}\}\{\{ac\}\} time in seconds \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Resistance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Resistance is measured in Ohms.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{As conductors allow electricity to flow through a circuit, and insulators do not, resistance is circuit components slowing down or making it harder for electrical current to flow through a circuit.} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Each circuit component has some resistance, slowing down the current slightly. Sometimes an actual component called a resistor is added and it will have a number of ohms. That number will mean how difficult or easy it is for the current to flow through.} \tn % Row Count 11 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{A thin wire will have more resistance than a thick wire.} \tn % Row Count 13 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{We know that a voltmeter would slow down the current altogether, and an ammeter would slow it down VERY slightly, an almost insignificant amount.} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Voltmeters need to withstand stored energy (to measure how much energy is going in and coming out of a component such as a light globe). So, they are stronger than ammeters and resist the current a lot more while an ammeter just wouldn't be able to handle much at all. Re-read the slide on ammeters if this makes no sense.} \tn % Row Count 23 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Ammeters}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{In a circuit, an ammeter must be connected in series. We do this because we want to know what rate the electrons (coulombs) are moving through that point in the circuit.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{To connect an ammeter correctly, you need to break the circuit (stop flow, not smash-break).} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Red (+) and black (-) terminals} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Ammeters have almost no resistance, allowing as much current to pass through as possible for an accurate reading without disturbing the current too much.} \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{There are different scales to read.} \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Measuring and Calculating Current}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Measured by an ammeter, in amperes, or amps for short.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{I = Current in Amperes} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Q = Quantity of Charge in coulombs} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{t = time in seconds} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{I = Q(c)/t (s)} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{For mA to A: Simply divide mA by 1000.} \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Eg: 450 mA = 0.45A} \tn % Row Count 8 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{For A to mA: Simply multiply A by 1000.} \tn % Row Count 9 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Eg: 0.45A x 1000 = 450mA or move 3 decimal points to the left.} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Example: If 5 coulombs of charge pass point X in 2 seconds, what is the current?} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Summary}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Assuming all globes have the same resistance: in a series circuit, the current is the same at every point because it flows in one loop around from one battery terminal back to the other battery terminal. The globes should light up at the same brightness.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{In a parallel circuit, the current splits as it turns at each junction, or corner. It divides and is shared among all components. The globes should also light up equally.} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Ohm's Law}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Ohm's law shows us that there is a relationship between current, voltage and resistance.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Current is proportional to Voltage –More voltage = more current flowing through.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Current is disproportionate to Resistance – More resistance = less current flowing through.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The equation for finding out the Voltage, Current and Resistance is I = V/R, or V=IR. That is, Voltage equals Current x Resistance.} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Calculating energy transferred}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Work out the energy transferred using this equation:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{energy = current x voltage x time} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{E = I × V × t where:} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{E is the energy transferred in joules, J} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{I is the current in amperes, A} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{V is the potential differences in volts, V} \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{t is the time in seconds, s} \tn % Row Count 8 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Charge is current multiplied by time so this equation can also be written as:} \tn % Row Count 10 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{E = V × Q where:} \tn % Row Count 11 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{E is the energy transferred in joules, J} \tn % Row Count 12 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{V is the potential difference in volts, V} \tn % Row Count 13 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Q is the charge in coulombs, C} \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Resistance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The measure of the difficulty of passing an electrical current through a conductor.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Different parts of the circuit (wires, globes, resistors, etc.) have different levels of resistance.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Calculate the reciprocal of the total resistance in parallel circuits by adding their {\bf{reciprocals}}.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Resistors}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Resistors can be used to protect other components (such as an LED) from damage by too much current.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Resistance is also useful in things like transistor radios and TV sets.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Symbols}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/phoebe12_1525950888_large.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Voltmeters}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{You attach a voltmeter to find out how much energy (the doughnuts represent energy in the earlier animation) goes into a component and out the other.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{You attach the voltmeter parallel to the component you are testing and not in series. This means you do not need to break the circuit to measure volts.} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Voltmeters are designed so that they do not significantly affect the amount of the current passing through the circuit component.} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Voltmeters have a lot of resistance. If you connected it in series, it would probably stop the current from going through which isn't useful or fun.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Series and Parallel}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The components in electrical circuits can be connected in series or in parallel.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Components that are connected one after another on the same loop of the circuit are connected in series. The current that flows through each component connected in series is the same.} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The sum of all the potential differences across the components in a series circuit is equal to the total potential difference across the power supply.} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Components that are connected on separate loops are connected in parallel. The current is shared between each component connected in parallel. The total amount of current flowing into the junction, or split, is equal to the total current flowing out. The current is described as being conserved.} \tn % Row Count 15 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{For a parallel circuit the current from the electrical supply is greater than the current in each branch. The sum of all the current in every branch is equal to the current from the electrical supply.} \tn % Row Count 19 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Potential energy = voltage.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Simple Circuits \& Symbols}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Every circuit must have:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1. Power supply e.g. a battery} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{2. Load/s: that converts electrical energy into another form of energy e.g. light bulb} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{3. Conducting path e.g. connecting wires} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.68758 cm} x{2.28942 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Voltage}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Definition: a measure of how much energy electrons gain from a power source or lose as it moves around a circuit through a load} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The power source (eg: a battery) provides the electrons with the energy that is stored inside the power source.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{energy gained = energy "lost". The energy is used in the load component (eg. Filament inside the globe).} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The power supply and load should match in volts.} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Voltage is measured in volts (V)} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The number of volts is equal to how much energy per coulomb (packet of electrons) is taken through the circuit from the power supply to the components for use.} \tn % Row Count 15 (+ 4) % Row 6 \SetRowColor{LightBackground} Equation is V = & energy (j) \tn % Row Count 16 (+ 1) % Row 7 \SetRowColor{white} & electrons (c) \tn % Row Count 17 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Watch batteries, AA and AAA batteries are usually 1.5V} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.59501 cm} x{2.01388 cm} x{1.96811 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Series vs Parallel}} \tn % Row 0 \SetRowColor{LightBackground} & Series & Parallel \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \seqsplit{Arrangement} & A single path – components joined side by side & Separate paths – 1 (or more) component in each branch \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \seqsplit{Current} & SAME for every component & DIVIDES and SHARED among all components \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \seqsplit{Voltage} & SHARED amongst every component & SAME for every component \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \seqsplit{Advantage} & Adding more power devices increases voltage & Break in circuit won't affect other components \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} \seqsplit{Disadvantage} & Break in circuit affects all other components & Breaks in circuits can go undetected \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}