\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Phoebe Zhang (Phoebe12)} \pdfinfo{ /Title (8f-discovery-april-20th-1.pdf) /Creator (Cheatography) /Author (Phoebe Zhang (Phoebe12)) /Subject (8F Discovery April 20th (1) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF9E9E} \definecolor{LightBackground}{HTML}{FFF2F2} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{8F Discovery April 20th (1) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Phoebe Zhang (Phoebe12)} via \textcolor{DarkBackground}{\uline{cheatography.com/30133/cs/11092/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Phoebe Zhang (Phoebe12) \\ \uline{cheatography.com/phoebe12} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 20th April, 2017.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Integers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Integers are positive whole numbers, negative whole numbers and zero.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{When there is more than 1 operation, remember to use BODMAS.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When adding/subtracting, look at the symbols in the middle.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{When multiplying/dividing, look at the symbols next to the numbers.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} + + = + & - - = + \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} + - = - & - + = - \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.24425 cm} x{3.73275 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Indices}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The {\bf{index}} is the small number above the {\bf{base}}.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Example: 2\textasciicircum{}4\textasciicircum{} & 2 is the {\bf{base}}, 4 is the {\bf{index}}. \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{2\textasciicircum{}4\textasciicircum{} can also be written as 2 x 2 x 2 x 2.} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2\textasciicircum{}4\textasciicircum{} can also be written as 16, as 2 x 2 x 2 x 2 = 16. This is known as a {\bf{basic numeral}}.} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.96117 cm} x{1.64772 cm} x{1.96811 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Reciprocals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{The reciprocal is simply: 1/number.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{3}{x{5.377cm}}{Reciprocal: What to multiply a value by to get 1. It is also known as "Multiplicative Inverse".} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Example: The reciprocal of 2 is $\frac{1}{2}$ (a half).} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{3}{x{5.377cm}}{More Examples:} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} Number & Reciprocal & As a decimal \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} 5 & 1/5 & = 0.2 \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} 8 & 1/8 & = 0.125 \tn % Row Count 8 (+ 1) % Row 7 \SetRowColor{white} 1000 & 1/1000 & = 0.001 \tn % Row Count 9 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{For fractions, flip the whole fraction over} \tn % Row Count 10 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{3}{x{5.377cm}}{Example: The reciprocal of 3/4 is 4/3} \tn % Row Count 11 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Every number has a reciprocal except 0.} \tn % Row Count 12 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{3}{x{5.377cm}}{Multiplying a number by its reciprocal gets us 1.} \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Simplifying Expressions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{How to simplify an expression:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1. Remove brackets by multiplying factors.} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{2. Use index laws to remove brackets in terms with indices.} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{3. Combine like terms by adding coefficients.} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{4. Combine the constants.} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Variable: A symbol for a number we don't know yet. It is usually a letter like x or y.} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Constant: A number on its own.} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Coefficient: A number used to multiply a variable.} \tn % Row Count 10 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Variables without a number have a coefficient of 1.} \tn % Row Count 12 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Example: ax2 + bx + c} \tn % Row Count 13 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{x is a {\bf{variable}}, a and b are {\bf{coefficients}} and c is a {\bf{constant}}.} \tn % Row Count 15 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Like terms are terms whose variables (and their exponents such as the 2 in x2) are the same. In other words, terms that are "like" each other. (Note: the coefficients can be different)} \tn % Row Count 19 (+ 4) % Row 12 \SetRowColor{LightBackground} Example: & −2{\bf{xy2}} \tn % Row Count 20 (+ 1) % Row 13 \SetRowColor{white} 6{\bf{xy2}} & (1/3){\bf{xy2}} \tn % Row Count 21 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{These are all like terms because the variables are all xy2} \tn % Row Count 23 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Prime and Composite Numbers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A prime number is a number that can be divided evenly only by 1, or itself. And it must be a whole number greater than 1.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{A composite number is a whole number that can be divided evenly by numbers other than 1 or itself.} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Factors and Multiples}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Factors and multiples are both to do with multiplication:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Factors are what we can multiply to get the number.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Multiples are what we get after multiplying the number by an integer (not a fraction).} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Index Laws}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. The numbers in index form with the same base can be multiplied together by being written in factor form first.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Multiply: a\textasciicircum{}m\textasciicircum{} x a\textasciicircum{}n\textasciicircum{} = a\textasciicircum{}m + n\textasciicircum{}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. The numbers in index form with the same base can be divided first by being written in factor form.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Divide: a\textasciicircum{}m\textasciicircum{} ÷ a\textasciicircum{}n\textasciicircum{} = a\textasciicircum{}m - n\textasciicircum{}} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. Any base that has an index power of 0 is equal to 1.} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Zero Law: a\textasciicircum{}0\textasciicircum{} = 1} \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{4. Every number and variable inside the brackets should have its index multiplied by the power outside the brackets.} \tn % Row Count 14 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Powers: (a\textasciicircum{}m\textasciicircum{})\textasciicircum{}n\textasciicircum{} = a\textasciicircum{}m x n\textasciicircum{}} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. Negative Indices: a\textasciicircum{}-3\textasciicircum{} = 1 ÷ a\textasciicircum{}3\textasciicircum{}} \tn % Row Count 16 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. Any number or variable that does not appear to have an index really has an index of one.} \tn % Row Count 18 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{7. Every number or variable inside the brackets must be raised to the power outside the brackets.} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Factor Trees}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A factor tree is a special diagram where you find the factors of a number, then the factors of those numbers, etc until you can't factor any more.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The ends are all the prime factors of the original number.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A prime factor is a factor that is a prime number: one of the prime numbers that, when multiplied, give the original number.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Example: The prime factors of 15 are 3 and 5 (3×5=15, and 3 and 5 are prime numbers).} \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{There is only one (unique) set of prime factors for any number. This is called the Fundamental Theorem of Arithmetic.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}