Cheatography

Pharmacokinetic Calculations WIP Cheat Sheet by PharmacyPhrend via cheatography.com/184310/cs/38427/

Basic Pha	rmacy Parameters	Importa		
CL	CL is the amount of			
(Clear-	drug per unit time			
ance)	that is excreted	Basic F		
	unchanged from	CL		
	body. For example, if	CL		
	liver blood flow is 100	ER		
	L/H and CL is 50 L/h,	Vd		
	then that means half of the blood passing	Vd		
	through the liver is			
	cleared of blood.	Loading		
\/.d		dose		
Vd	Vd is a parameter			
(Volume	referring to how			
of Distri-	much drug is distri-			
bution)	buted within tissue			
	versus plasma. If the			
	Vd is high, there is			
	more drug in plasma			
	than tissue, if it is			
	low, there is more			
	within tissue. Used			
	for calculating			
	loading dose.			
F (Bioavailability)				
t½ (Half-life)				
au (Tau) (Dosing interval)				
AUC (Area under time concen-				
tration curv	ve)			
AUC 0-24				
Cp (plasm	a concentration)			
ke				
ka				
Css,ave				
MDR (Maintenance Dose Rate)				
_				

4	

By PharmacyPhrend

Not published yet. Last updated 30th April, 2023. Page 1 of 1. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

cheatography.com/pharmacyphrend/

Important relationships				
Basic Formulas				
CL	= DR/Css			
CL	= Dose/AUC(N)			
ER	= CL * Cp			
Vd	= Fu/Fut * Vt			
Vd	= A/C			
Loading	= V * Target plasma			
dose	concentration			