Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.1 Shortcuts in Computation			1.2 Number Logic				
1. Quicker Counting	Grouping numbers that add up to 5 or 10	73+74+27+26 =(73+27)+(74+26)	Properties of Numbers	of	Primes	factor	of 1 and itself only
Methods					Composites	factors	s other than itself
	Round off numbers that are close to 5 or 10	73+74+27+26 =75 -2 +75-	Divisbility R	ules	Divisibility rule of 2	EVEN ends v	vith 0,2,4,6,8
2. Sum of numbers thatFor patterns whe numbers increaseform a patternrease by same with	For patterns where:	1+25 +2 +25 +1 1. rewrite sum in			Divisibility rule of 3	sum o by 3	f its digits divisble
	numbers increase/dec- rease by same value	reverse order Divisibility rule of las underneath 4				last 2	last 2 digits divisible by 4
		 2. pair up and sum 3. sums of pairs are the same 			Divisibility rule of 5	ends v	vith 0 or 5
		4. Since sums are the Divisibility rule of same, multiple sum by 6 Divisible by 8			Divisibility rule of 6	EVEN	AND divisible by 3
			last 3	last 3 digits divisible by 8			
	Example:	5. Divide by 2 Find 2+4+6++78+80			Divisible by 9	sum of its digits divisble by 9	
					Divisible by 10		vith 0
		2+4+6++78+80 80+78++6+4+2 82*40=3280 3280/2=1640	Squared Numbers		NxN=N ²	eg 2x2	$2=2^2=4$
			Cubed Num	nbers	NxNxN=N ³	eg 2x2	$2x2=2^{3}=8$
			1.3 Developing Patterns and Shortcuts				
		2+4+6++78+80= 1640	Factor-	A numb	er is factorised whe	n	250
3. Quicker Muliplication Methods	Remember numbers in their expanded form	3526=3000+500+20+6	ising Numbers	express number	ed as a product of p s	orime	=2x125 =2x5x25 =2x5x5x5
	3.1 Multiples of 10	30x25 Find prime factors					
		=3x10x25	HCF	largest counting number that divides into l			s into both exactly
		=3x250 =750	Highest Common	method			 factorise multiply the
	3.2 Multiples of 5	25x6 =5x5x6 =5x30 =5x3x10	Factor				factors that are common only those factors that have a pair
		=15x10 =150		example	•	·	HCF of 240 and 924 240=2x5x2x2x3x2 924=3x2x7x11x2 HCF=2x3x2=12
			LCM	Of all th	e multiples of the 2	numbers	s, its the smallest

Of all the multiples of the 2 numbers, its the **smallest** multiple they have in common

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 1 of 8. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.3 Developing Patterns and Shortcuts (cont)		1.3 Develo	ping Patterr	ns and Shortcuts (cont)			
Lowest Common Multiple	method	 factorise multiply the factors that are common and factors they dont have in common 	Question (HCM and LCM)	Dennis has numbers of numbers h of 6. Their One of the the other r	s a choice between two on Small Street. The two lave their highest common least common multiple i house numbers is 12. V number?	house house on factor s 36. Vhat is	how to solve work backwards
example	example	LCM of 120 and					
		140 120= 2 x2x2x3x5 140= 2 x2x3x7 LCM= 2 x2x3x2x5x7	Logic Deduction Problems	lf need to first	add groups of things, us	se biggest	numbers
Question (find multiples)	Jack, Art, Fran and Megan work as volunteers at the local kennel. Jack gives the dogs baths every 4 days. Art cleans out cages every 6 days. Frand feeds the animals in section b every 2 days. Megan helps the receptionist every 3 days. How many times in 12	how to solve Find all the common multiples from 6 days to 84 days (12 weeks) of 4, 6, 2, 3	Question	What is the coins need from only	ne minimum number of eded to make \$4.85 5c, 20c, 50c coins vorse case scenario	Start with coins first through t coins 9x50c=\$4 1x20c=20 3x5c=150	a biggest t, working o smaller 4.50 Dc c
	clinic on the same day?			investigat	e standard case		
Question	Two buses leave the terminal at 8am. Bus A takes 60mins to complete its route and Bus B takes 75mins. When is the next time the two buses will arrive together at the terminal (if they are on time)?	how to solve	write relations between numbers down				
(LCM)		1. Find LCM of 60	1.5 Space,	Area and V	/olume		
		LCM to 8am	Area of Re	ctangle	length x width		
			Area of Tria	angle	A = base x height / 2		
			Volume of	Cube	$V = a^3$ where a is length	h of a side	
			Volume of Rectan- gular Prism		V = length x height x depth		
			1m		= 100cm		
			Finding Area of Rectangular Shapes				
			Method 1		Divide shape into rectangles	Find area find total	of each and
	By peterwongau	Published 28th May, 2	022.		Sponsored by Apollo	Pad.com	

cheatography.com/peterwongau/

Last updated 30th May, 2022. Page 2 of 8.

Everyone has a novel in them. Finish Yours! https://apollopad.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.5 Space, A	Area and Volu	ime (cont)		1.6 Equations (cont)			
Method E 2 la	Extend shape i arger rectangle	nto one	 Find area of larger rectangle (X) Find area of missing rectangle (Y) Larger rectangle (X) - Missing rectangle (Y) 	1. Solving by Adding ar Subtracting Equations	id example	5x - y = 4 (1) 2x + y = 10 (1)+(2) 7x = 14 x = 2 y = 6	
1.6 Equation	ns				example	7x + y = 18(1)	
Pronum- erals	Boxes to st	ore missing	numbers			2x + 2y = 12 (2) (1) x 2 14x + 2y = 36 (1a)	
	Letters to re	epresent un	known numbers			(1a) - (2) 12x = 24	
	Use x , y an	id z				x = 2	
Rearra-	= is like a b	alancing sc	ale			y = 4	
nging Equations				2. Solving by Substitution	on method	1. rearrange one equation for y	
	solving an equation	aim of find	ding the unknown number			2. substitute y into other equation	
	rearra- nging equations	how to so	lve an equation		example	5x - y = 4 (1) 2x + y = 10 (2) rearrange (1)	
		how if we need to de side eg. if we a	do something to one side, we o the same thing to the other dd 3 to one side, we need to			y = 5x - 4 (1a) substitute (1a) into (2) 2x + (5x - 4) = 10	
		add 3 to th	ne other side			x = 2 y = 6	
		eg. if we t i to times b	mes by 3 to one side, we need y 3 to the other side	Turning word problems into an equation			
	+ x	-	-	Step 1	What are unknowns	the Give each a letter, x , y	
Simult-	if there are	2 unknowns	s. need 2 equations	Step 2	Find the e	equations to solve	
aneous			.,	Step 3	Solve the	simultaneous equations	
Equations				Example Questions			
				The quotient of two nur the smaller number of t	nbers is 4 and the he two	r difference is 39. What is	
			The sum of the ages of Alan and Bill is 25; the sum of the ages of Alan and Carl is 20; the sum of the ages of Bill and Carl is 31. Who the oldest of the three boys and how old is he?				
	By potonyor	nau	Dublished 20th May 2	0022	Sponsorod by	nolloPad.com	
С	by peterwor	iyau	Last updated 30th Ma Page 3 of 8.	y, 2022.	Everyone has a Yours!	novel in them. Finish	

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.7 Probab	ility, Venn Diagrams and Whodunits		1.7 Probat	bility, Venn Diagrams and Whodunits	(cont)	
1. Certainty Problems			Example	There are 160 students in Year 5. C	f these students, 69	
Typical Question	Suppose that there are ten black and ten navy socks in your drawer. Your room is dark and you cannot turn on the	Basically, to be certain of "an outcome",	Question	walked to school and 57 caught a train to school. If 148 students either walked to school or caught the train, how many students walked and caught a train to school?		
light. What is the smallest nur socks that you must take out drawer to be certain that you pair of the same colour?	light. What is the smallest number of socks that you must take out of your	what is the smallest		Draw a Venn diagram with a circle f walked and students that caught the	or students that e train	
	drawer to be certain that you have a pair of the same colour?	number of "- actions" required to		Where they overlap, are the number walked and caught the train	r of students that	
			Whodunits	;		
Strategy	Start from smallest and go up		Strategy	Use a table, with different charac- teristics in columns and membersUsually the and needed are the characteristicsof a group in rowscharacteristics	Usually the answer needed are the	
	1 sock	can't be			characteristics	
	2 socks	ks can't be Ques	Example Question	Martin, Bill and Dave (members of a group) play first base, second base, and third base (characteristics) on their school softball team, but not necessarily in that		
	3 socks	can be certain		order. Martin and the third baseman took Dave to th movies yesterday. Martin does not play first base. V	took Dave to the play first base. Who's	
2. Certainty	Problems with Restrictions			on first base?		
Typical Question	As above question, but what is the smallest number of socks needed to ensure we get a pair of black socks	Restriction is it must be black socks				
Strategy	Think Worst Case Scenario					
	Worst case is you could in 10 picks, pick socks. 2 more picks you'll be certain to ge black socks	only Navy et a pair of				
	12 socks	can be certain				
Venn Diagrams	circle represents sets or groups of things	that are same				

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 4 of 8. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.8 Motions, Books, Clocks and Work Problems			1.8 Motion	is, Books, Clo	ocks and Work Problems (cont)		
1. Motion Problems				Example	A printer us	ses an old-style printing press and needs one	
distance	e = rate x time			Question	piece of type for each digit in the page numbers of		
Example Question	Two trains leave	the same station at tions. One train ave	the same time, but		book. How numbers fro	many 2s will the printer need to print page om 1 to 250	
1 the other averages 64 km/h. How fa		r apart will the trains	consider th	ne numbers p	place by place		
	be when three hours have passed?				number of	25	
Strategy	Step 1	Whats the distand diagram)	ce after 1hr? (Draw a	times 2s appear in			
		56km + 64km = 1	20km		the 1s		
		56km/hr + 64km/hr = 120km/hr		place	20		
	Step 2	Whats the distance	ce after 3hrs?	number of times 2s		30	
		120km x 3 = 360k	ĸm		appear in		
	if opposite direction,	add		the 10s place			
Example Question 2	Suppose that the at the same time apart will the from hours?	Suppose that these two trains start from the same station at the same time, this time in the same direction. How far apart will the fronts of the trains be at the end of the three hours?			number of times 2s appear in the 100s	of 51	
	Step 1	Whats the distand diagram)	ce after 1hr? (Draw a		place answer	=25+30+51	
		64km/hr - 56km/h	r = 8km/hr			=106	
		64km - 56km = 8ł	٢m	3. Clock P	3. Clock Problems		
	Step 2	Whats the distance	ce after 3hrs?	elapse time	amount of time that has passed		
		8km x 3 = 24km		solve	facts about time		
	if opposite direction,	subtract		using			
2. Book Pr	oblems			Example	A certain cl	n clock gains one minute of time every hour. If	
look at the structure of counting numbers used for		Ques or book pages	Question	hours will it regard to a	next show the correct time now, in now many next show the correct time again without m or pm?		
				Fact 1	A clock that has stopped	Will show the correct time every 12 hrs. As it stopped at 6.03am on Monday. It was correct at the time it stopped. It will be correct again, when the time is at 6.03pm	
By peterwongau		Published 28th May, 2 Last updated 30th May Page 5 of 8.	022. /, 2022.		Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com		

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.8 Motions	s, Books, Clocks	and Work Problems (cont)			
Fact 2	The clock in the correct time aga	problem must gain 12 hours to show ain			
thus	12 hrs	=60mins x 12 = 720mins			
thus	as clock gains 1 min in 1hr	the clock will gain 720min in 720hrs			
		720/24=30days			
4. Work Pr	oblems				
solving using	fractional parts of whole numbers and draw diagrams				
Example Question	Paul can do a certain job in 3hrs and John can do the same job in 2hrs. At these rates, how long would it take Paul and John to do this job if they work together				
Strategy	Step 1	Draw a diagram for Paul and John. Fractional parts done in each hour			
	Step 2	Using the diagram, in one hour they can complete $1/3 + 1/2 = 5/6$ of the job			
	Step 3	Work out how long to complete job			
		1/5 of job left			
		60min / 5 = 12mins to complete 1/5 of job			
	answer	=1hr 12mins			
1.9 Probler	m Solving Strate	gies			

1. Drawing a picture or diagram

ExampleThe lengths of three rods are 5cm, 7cm, and 15cm. HowQuestioncan you use these rods to measure a length of 13cm?

2. Making an organised list

cheatography.com/peterwongau/

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 6 of 8.

1.9 Problem Solving Strategies (cont)

Example Question	Five students hold a chess tournament. Each of the students plays each of the other students just once. How many different games are played?
3. Making a	a table
Example Question	Two dice both have faces numbered from 1 through to 6. Suppose that you role the two dice. What is the probab- ility of rolling a sum of 8 in the uppermost faces?
4. Solving a	a simpler related problem
Example Question	The houses on Thomas Street are numbered consec- utively from 1 to 150. How many house numbers contain at least one digit 7?
5. Finding a	a pattern
Example Question	What is the sum of the following series of numbers?
6. Guessin	g and Checking
Example Question	Arrange the counting numbers from 1 to 6 in the circles so that the sum of the numbers along each side of the triangle is 10.
1.10 Proble	em Solving Strategies
1. Acting o	ut the problem
Example Question	Suppose that you buy a rare stamp for \$16, sell it for \$22, buy it back for \$30, and finally sell it for \$35. How much money did you make or lose?
2. Working	backwards
Example Question	At the end of a school day, a teacher had 15 crayons left. The teacher remembered giving out 13 of all her crayons in the morning, getting 8 back at recess, and giving out 9 crayons after lunch. How many crayons did the teacher have at the start of the day?

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.10 Problem Solving Strategies (cont)			2.1 Logical Approach to Problem Solving (cont)		
3. Writing an Equation			Prime number	counting number greater than 1, which is divisible	
Example	The triple of what number is sixtee	n greater than the		only by itself and	
Question 4.	number? Change your approach		Composite number	counting number greater than 1 which is divisible by a counting number other than 1 and itself	
Changing your point of view			A number is factored completely	when it is a product of prime numbers	
	Are you assuming something thats	s not in the question	Order of	BODMAS	
Example	Draw four continuous line segmen	ts through the nine	Operation		
Question	dots		common or	a/b where a and b are whole numbers and b is no	
5. Using Re	asoning		simple fraction	zero	
Example	A school has 731 students. Prove	that there must be at	unit fraction	common fraction with a numerator of 1	
G Missellen		le birtilday.			
6. Miscellari	Three apples and two pears cost 7	78 cents But two	fraction	arb where a > b	
Question	apples and three pears cost 82 cents. What is the cost of one apple and one pear?		complex fraction	numerator or denominator contains a fraction	
			20th century	100 year period 1901-2000 inclusive	
2.1 Logical	Approach to Problem Solving		average of a set	sum of the N numbers divided by N	
4 Steps to P	roblem Solving		of N numbers		
Step 1	Understand the problem		acute angle	less than 90 degrees	
Step 2	Develop a plan	choose a problem	right angle	90 degrees	
Sten 3	Carry out the plan	solving stategy	obtuse angle	greater than 90 degrees	
Step 4	Reflect		straight angle	180 degrees	
Mathematic	al Terms used in the Olympiad		reflex angle	more than 180 degrees and less than 360 degrees	
Standard	1358		scalene triangle	no equal angles	
Form			isosceles	2 equal angles	
Expanded	1x1000+3x100+5x10+8x1		triangle		
Form			equilateral	3 equal angles	
Expone- ntial Form	1x10 ³ +3x10^2+5x10+8x1		right-angled	90 angle	
Whole numbers	0,1,2,3,				
Counting numbers	1,2,3,				
Divisibility	A is divisible by B, if B divides into A with zero remainder	If so, B is a factor of A			

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 7 of 8. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

2.1 Logical	Approach to Problem Solving (cont)
congruent shapes	shapes on the same plane whose sides and angles are the same
2.2 Types o	of Problems
1. Transl- ation Problems	translate word sentences to mathematical sentences
Example Question	Farmer Joe bought 2 bags of feed for \$4 each and 1 bag of feed for \$3. How much did the feed bags cost altogether?
2. Applic- ation Problems	'real-world' problems, usually involve calculations with money, to find discounts , profits or cost of items
Example Question	Shop A is offering a 10% discount on 34cm colour TV sets priced normally at \$379. Meanwhile Shop B is offering 15% discount on the same sets priced normally at \$409. Which shop should you purchase the TV from?
3. Process Problems	Usually require using general problem solving steps and specific strategies. May use short-cuts when aware of patterns
Example Question	The first 4 triangular numbers are 1, 3, 6, 10. What will the 10th triangular number be?
4. Puzzle Problems	like riddles
Example Question	Three Australian students who were born in different countries have last names Brown, Black and Bright. Their first names are Jim, John and Jane but not necessarily in that order. Using the information below can you determine the full name of each student? Brown was born in Australia Bright has never been to Malaysia Jane was born in England Jim was born in Malaysia

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 8 of 8. Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com