

Mathematics Olympiad Cheat Sheet

by peterwongau via cheatography.com/133991/cs/32226/

1.1 Shortcuts in	Computation	
1. Quicker Counting Methods	Grouping numbers that add up to 5 or 10	73+74+27+26 =(73+27)+(74+26)
	Round off numbers that are close to 5 or 10	73+74+27+26 =75- 2 +75- 1+25+ 2 +25+1
2. Sum of numbers that form a pattern	For patterns where: numbers increase/dec- rease by same value	 rewrite sum in reverse order underneath pair up and sum sums of pairs are the same Since sums are the same, multiple sum by number of pairs Divide by 2
	Example:	Find 2+4+6++78+80 2+4+6++78+80 80+78++6+4+2 82*40=3280 3280/2=1640 2+4+6++78+80=1640
3. Quicker Muliplication Methods	Remember numbers in their expanded form	3526=3000+500+20+6
	3.1 Multiples of 10	30x25 =3x10x25 =3x250 =750
	3.2 Multiples of 5	25x6 =5x5x6 =5x30 =5x3x10 =15x10 =150

1.2 Number Logic		
Properties of Numbers	Primes	factor of 1 and itself only
	Composites	factors other than itself
Divisbility Rules	Divisibility rule of 2	EVEN ends with 0,2,4,6,8
	Divisibility rule of 3	sum of its digits divisble by 3
	Divisibility rule of 4	last 2 digits divisible by 4
	Divisibility rule of 5	ends with 0 or 5
	Divisibility rule of 6	EVEN AND divisible by 3
	Divisible by 8	last 3 digits divisible by 8
	Divisible by 9	sum of its digits divisble by 9
	Divisible by 10	ends with 0
Squared Numbers	NxN=N ²	eg 2x2=2 ² =4
Cubed Numbers	NxNxN=N ³	eg 2x2x2=2 ³ =8

1.3 Develop	oing Patterns and Shortcuts	
Factor- ising Numbers	A number is factorised when expressed as a product of prime numbers	250 =2x125 =2x5x25 =2x5x5x5
	Find prime factors	
HCF	largest counting number that divide	s into both exactly
Highest Common Factor	method	1. factorise 2. multiply the factors that are common only those factors that have a pair
	example	HCF of 240 and 924 240=2x5x2x2x3x2 924=3x2x7x11x2 HCF=2x3x2=12
LCM	Of all the multiples of the 2 number multiple they have in common	s, its the smallest

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 1 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

Lawast	months of	4 footowing	Ougatia	Dans
Lowest Common Multiple	method	factorise multiply the factors that are common and factors they dont have in common	Question (HCM and LCM)	numl numl of 6.
	example	LCM of 120 and 140	1.4 Logic D	educt
		120=2x2x2x3x5 140=2x2x3x7 LCM=2x2x3x2x5x7	Logic Deduction Problems	If ne
Question (find multiples)	Jack, Art, Fran and Megan work as volunteers at the local kennel. Jack gives the dogs baths every 4 days. Art cleans out cages every 6 days. Frand feeds the animals in section b every 2 days. Megan helps the receptionist every 3	how to solve Find all the common multiples from 6 days to 84 days (12 weeks) of 4, 6, 2, 3	C	What coir from
	days. How many times in 12 weeks will all 4 helpers be at the			ass
	clinic on the same day?			inve
Question	Two buses leave the terminal at	how to solve		VVIII
(LCM)	8am. Bus A takes 60mins to complete its route and Bus B	1. Find LCM of 60 and 75. 2. Add	1.5 Space,	Area
	takes 75mins . When is the next	LCM to 8am	Area of Re	ctangl
	time the two buses will arrive		Area of Tria	angle
	together at the terminal (if they are on time)?		Volume of	Cube
	a.c 311 amoy.		Volume of gular Prism	

Question (HCM and LCM)	numbers on Small Street. The two house numbers have their highest common factor wor		how to solve work backwards
1.4 Logic D	eduction		
Logic Deduction Problems	If need to add groups of things, u first	se biggest	numbers
Question	What is the minimum number of coins needed to make \$4.85 from only 5c, 20c, 50c coins		t, working o smaller 4.50
	assume worse case scenario		
	investigate standard case		
	write relations between numbers	down	

1.5 Space, Area and Volume			
Area of Rectangle	length x width		
Area of Triangle	A = base x height / 2		
Volume of Cube	V = a ³ where a is leng	gth of a side	
Volume of Rectan- gular Prism	V = length x height x	depth	
1m	= 100cm		
Finding Area of Recta	ingular Shapes		
Method 1	Divide shape into rectangles	Find area of each and find total	

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 2 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

1.5 Space, Area and Volume (cont)				

1.6 Equation	ıs		
Pronum- erals	Boxes to store missing numbers		
	Letters to re	epresent unknown numbers	
	Use x , y ar	nd z	
Rearra- nging Equations	= is like a b	alancing scale	
	solving an equation	aim of finding the unknown number	
	rearra- nging equations	how to solve an equation	
		how if we do something to one side, we need to do the same thing to the other side	
		eg. if we add 3 to one side, we need to add 3 to the other side	
		eg. if we times by 3 to one side, we need to times by 3 to the other side	
	+	-	
	Х	1	
Simult- aneous Equations	if there are	2 unknowns, need 2 equations	

1.6 Equations (cont)		
Solving by Adding and Subtracting Equations	example	5x - y = 4 (1) 2x + y = 10 (1)+(2) 7x = 14 x = 2 y = 6
	example	7x + y = 18 (1) 2x + 2y = 12 (2) $(1) \times 2$ 14x + 2y = 36 (1a) (1a) - (2) 12x = 24 x = 2 y = 4
2. Solving by Substitution	method	 rearrange one equation for y substitute y into other equation
	example	5x - y = 4 (1) 2x + y = 10 (2) rearrange (1) y = 5x - 4 (1a) substitute (1a) into (2) 2x + (5x - 4) = 10 x = 2 y = 6
Turning word problems into a	n equation	
Step 1	What are the unknowns?	Give each a letter, x , y
Step 2	Find the equation	ons to solve
Step 3	Solve the simul	taneous equations
Example Questions		
The quotient of two numbers	is 4 and their diffe	erence is 39. What is

The quotient of two numbers is 4 and their difference is 39. What is the smaller number of the two

The sum of the ages of Alan and Bill is 25; the sum of the ages of Alan and Carl is 20; the sum of the ages of Bill and Carl is 31. Who is the oldest of the three boys and how old is he?

By **peterwongau**

Published 28th May, 2022. Last updated 30th May, 2022. Page 3 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

1.7 Probability, Venn Diagrams and Whodunits 1.7 Probability, Venn Diagrams and Whodunits (cont) 1. Certainty Problems Example There are 160 students in Year 5. Of these students, 69 Question walked to school and 57 caught a train to school. If 148 Typical Suppose that there are ten black and Basically, to students either walked to school or caught the train, how Question ten navy socks in your drawer. Your be certain of many students walked and caught a train to school? room is dark and you cannot turn on the "an outcome", light. What is the smallest number of what is the Draw a Venn diagram with a circle for students that socks that you must take out of your smallest walked and students that caught the train drawer to be certain that you have a number of "-Where they overlap, are the number of students that pair of the same colour? actions" walked and caught the train required to Whodunits take Use a table, with different charac-Usually the answer Strategy Strategy Start from smallest and go up teristics in columns and members needed are the can't be 1 sock of a group in rows characteristics certain Example Martin, Bill and Dave (members of a group) play first 2 socks can't be base, second base, and third base (characteristics) on Question certain their school softball team, but not necessarily in that 3 socks can be order. Martin and the third baseman took Dave to the certain movies yesterday. Martin does not play first base. Who's on first base? 2. Certainty Problems with Restrictions Typical As above question, but what is the Restriction is Question smallest number of socks needed to it must be black socks ensure we get a pair of black socks Think Worst Case Scenario Strategy Worst case is you could in 10 picks, pick only Navy socks. 2 more picks you'll be certain to get a pair of black socks 12 socks can be certain circle represents sets or groups of things that are same Venn **Diagrams**

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 4 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

1.8 Motion	1.8 Motions, Books, Clocks and Work Problems				
1. Motion	Problems				
distance	= rate x time				
Example Question 1	Two trains leave the same station at the same time, but in opposite directions. One train averages 56 km/h and the other averages 64 km/h. How far apart will the trains be when three hours have passed?				
Strategy	Step 1 Whats the distance after 1hr? (Draw a diagram)				
		56km + 64km = 120km			
		56km/hr + 64km/hr = 120km/hr			
	Step 2	Whats the distance after 3hrs?			
		120km x 3 = 360km			
	if opposite direction,	add			
Example Question 2	Suppose that these two trains start from the same station at the same time, this time in the same direction. How far apart will the fronts of the trains be at the end of the three hours?				
	Step 1	Whats the distance after 1hr? (Draw a diagram)			
		64km/hr - 56km/hr = 8km/hr			
		64km - 56km = 8km			
	Step 2	Whats the distance after 3hrs?			
		8km x 3 = 24km			
	if opposite direction,	subtract			
2. Book Problems					
look at the structure of counting numbers used for book pages					

1.8 Motion	s, Books, Clo	cks and Work Problems (cont)
Example Question	piece of type	es an old-style printing press and needs one e for each digit in the page numbers of a many 2s will the printer need to print page om 1 to 250
consider th	ne numbers p	lace by place
	number of times 2s appear in the 1s place	25
	number of times 2s appear in the 10s place	30
	number of times 2s appear in the 100s place	51
	answer	=25+30+51 =106
3. Clock Pr	roblems	
elapse time	amount of ti	me that has passed
solve using	facts about	time
Example Question	the clock sh	ock gains one minute of time every hour. If ows the correct time now, in how many next show the correct time again without n or pm?
Fact 1	A clock that has stopped	Will show the correct time every 12 hrs. As it stopped at 6.03am on Monday. It was correct at the time it stopped. It will be

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 5 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

correct again, when the time is at 6.03pm

Mathematics Olympiad Cheat Sheet

by peterwongau via cheatography.com/133991/cs/32226/

1.8 Motions, Books, Clocks and Work Problems (con	1.8 Motions, Bo	ooks, Clocks	and Work F	Problems (cont)
---	-----------------	--------------	------------	------------	-------

Fact 2 The clock in the problem must gain 12 hours to show correct time again

thus 12 hrs =60mins x 12 = 720mins

thus as clock the clock will gain 720min in 720hrs

gains 1 min in 1hr

720/24=30days

4. Work Problems

Example QuestionPaul can do a certain job in 3hrs and John can do the same job in 2hrs. At these rates, how long would it take Paul and John to do this job if they work togetherStrategyStep 1Draw a diagram for Paul and John. Fractional parts done in each hourStep 2Using the diagram, in one hour they can complete 1/3 + 1/2 = 5/6 of the jobStep 3Work out how long to complete job1/5 of job left60min / 5 = 12mins to complete 1/5 of job		solving using	fractional parts of whole numbers and draw diagrams		
Fractional parts done in each hour Step 2 Using the diagram, in one hour they can complete 1/3 + 1/2 = 5/6 of the job Step 3 Work out how long to complete job 1/5 of job left 60min / 5 = 12mins to complete 1/5 of			same job in 2hrs. At these rates, how long would it take		
complete 1/3 + 1/2 = 5/6 of the job Step 3 Work out how long to complete job 1/5 of job left 60min / 5 = 12mins to complete 1/5 of		Strategy	Step 1	· ·	
1/5 of job left 60min / 5 = 12mins to complete 1/5 of			Step 2	,	
60min / 5 = 12mins to complete 1/5 of			Step 3	Work out how long to complete job	
·				1/5 of job left	
				'	

1.9 Problem Solving Strategies

answer

1. Drawing a picture or diagram

Example The lengths of three rods are 5cm, 7cm, and 15cm. How **Question** can you use these rods to measure a length of 13cm?

=1hr 12mins

2. Making an organised list

1.9 Problem Solving Strategies (cont)

Example Five students hold a chess tournament. Each of the

Question students plays each of the other students just once. How
many different games are played?

3. Making a table

Example Two dice both have faces numbered from 1 through to 6.

Question Suppose that you role the two dice. What is the probability of rolling a sum of 8 in the uppermost faces?

4. Solving a simpler related problem

Example The houses on Thomas Street are numbered consec-Question utively from 1 to 150. How many house numbers contain at least one digit 7?

5. Finding a pattern

Example What is the sum of the following series of numbers? **Question**

6. Guessing and Checking

Example Arrange the counting numbers from 1 to 6 in the circles

Question so that the sum of the numbers along each side of the triangle is 10.

1.10 Problem Solving Strategies

1. Acting out the problem

Example Suppose that you buy a rare stamp for \$16, sell it for Question \$22, buy it back for \$30, and finally sell it for \$35. How much money did you make or lose?

2. Working backwards

Example Question

At the end of a school day, a teacher had 15 crayons left. The teacher remembered giving out 13 of all her crayons in the morning, getting 8 back at recess, and giving out 9 crayons after lunch. How many crayons did the teacher have at the start of the day?

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 6 of 8. Sponsored by Readable.com

Measure your website readability!

https://readable.com

Mathematics Olympiad Cheat Sheet

by peterwongau via cheatography.com/133991/cs/32226/

1.10 Proble	1.10 Problem Solving Strategies (cont)				
3. Writing a	3. Writing an Equation				
Example Question	The triple of what number is sixteen greater than the number?				
4. Changing your point of view	Change your approach				
	Are you assuming something thats not in the question				
Example Question	Draw four continuous line segments through the nine dots				
5. Using Re	5. Using Reasoning				
Example Question	A school has 731 students. Prove that there must be at least 3 students who have the same birthday.				
6. Miscellan	6. Miscellaneous				
Example Question	Three apples and two pears cost 78 cents. But two apples and three pears cost 82 cents. What is the total cost of one apple and one pear?				

2.1 Logical				
4 Steps to F	4 Steps to Problem Solving			
Step 1	Understand the problem			
Step 2	Develop a plan	choose a problem solving strategy		
Step 3	Carry out the plan			
Step 4	Reflect			
Mathematic	Mathematical Terms used in the Olympiad			
Standard Form	1358			
Expanded Form	1x1000+3x100+5x10+8x1			
Expone- ntial Form	1x10 ³ +3x10^2+5x10+8x1			
Whole numbers	0,1,2,3,			
Counting numbers	1,2,3,			
Divisibility	A is divisible by B, if B divides into A with zero remainder	If so, B is a factor of A		

2.1 Logical Appro	2.1 Logical Approach to Problem Solving (cont)				
Prime number	counting number greater than 1, which is divisible only by itself and				
Composite number	counting number greater than 1 which is divisible by a counting number other than 1 and itself				
A number is factored completely	when it is a product of prime numbers				
Order of Operation	BODMAS				
common or simple fraction	a/b where a and b are whole numbers and b is no zero				
unit fraction	common fraction with a numerator of 1				
proper fraction	a/b where a < b				
improper fraction	a/b where a > b				
complex fraction	numerator or denominator contains a fraction				
20th century	100 year period 1901-2000 inclusive				
average of a set of N numbers	sum of the N numbers divided by N				
acute angle	less than 90 degrees				
right angle	90 degrees				
obtuse angle	greater than 90 degrees				
straight angle	180 degrees				
reflex angle	more than 180 degrees and less than 360 degrees				
scalene triangle	no equal angles				
isosceles triangle	2 equal angles				
equilateral	3 equal angles				
right-angled	90 angle				

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022.

Page 7 of 8.

Sponsored by Readable.com

Measure your website readability!

https://readable.com

2.1 Logical Approach to Problem Solving (cont)

congruent shapes on the same plane whose sides and angles

shapes are the same

2.2 Types of Problems

Translation

Problems

Example Farmer Joe bought 2 bags of feed for \$4 each and 1 bag Question of feed for \$3. How much did the feed bags cost altoge-

ther?

2. Application

'real-world' problems, usually involve calculations with money, to find **discounts**, **profits** or **cost** of items

Problems

Example Question

Shop A is offering a 10% discount on 34cm colour TV sets priced normally at \$379. Meanwhile Shop B is offering 15% discount on the same sets priced normally at \$409. Which shop should you purchase the TV from?

3.
Process
Problems

Usually require using general problem solving steps and specific strategies. May use short-cuts when aware of

patterns

like riddles

Example The first 4 triangular numbers are 1, 3, 6, 10. What will

Question the 10th triangular number be?

4. Puzzle

Problems

Example Question

Three Australian students who were born in different countries have last names Brown, Black and Bright. Their first names are Jim, John and Jane but not necessarily in that order. Using the information below can you determine the full name of each student? Brown was born in Australia Bright has never been to Malaysia Jane was born in England Jim was born in Malaysia

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 8 of 8.

cheatography.com/peterwongau/

Sponsored by Readable.com

Measure your website readability!

https://readable.com