1.1 Shortcuts in Computation

1. Quicker Counting	Grouping numbers that add up to 5 or 10	$\begin{aligned} & 73+74+27+26 \\ & =(73+27)+(74+26) \end{aligned}$
Methods		
	Round off numbers that are close to 5 or 10	$\begin{aligned} & 73+74+27+26 \\ & =75-2+75- \\ & 1+25+2+25+1 \end{aligned}$
2. Sum of numbers that form a pattern	For patterns where: numbers increase/decrease by same value	1. rewrite sum in reverse order underneath 2. pair up and sum 3. sums of pairs are the same 4. Since sums are the same, multiple sum by number of pairs 5. Divide by 2

1.2 Number Logic		
Properties of Numbers	Primes	factor of 1 and itself only
	Composites	factors other than itself
Divisbility Rules	Divisibility rule of 2	EVEN ends with $0,2,4,6,8$
	Divisibility rule of 3	sum of its digits divisble by 3
	Divisibility rule of 4	last 2 digits divisible by 4
	Divisibility rule of 5	ends with 0 or 5
	Divisibility rule of 6	EVEN AND divisible by 3
	Divisible by 8	last 3 digits divisible by 8
	Divisible by 9	sum of its digits divisble by 9
	Divisible by 10	ends with 0
Squared Numbers	$\mathrm{N} \times \mathrm{N}=\mathrm{N}^{2}$	eg $2 \times 2=2^{2}=4$
Cubed Numbers	$\mathrm{NxNxN}=\mathrm{N}^{3}$	eg $2 \times 2 \times 2=2^{3}=8$

1.3 Developing Patterns and Shortcuts		
Factor- ising Numbers	A number is factorised when expressed as a product of prime numbers	$\begin{aligned} & 250 \\ & =2 \times 125 \\ & =2 \times 5 \times 25 \\ & =2 \times 5 \times 5 \times 5 \end{aligned}$
Find prime factors		
HCF	largest counting number that divides into both exactly	
Highest Common Factor	method	1. factorise 2. multiply the factors that are common only those factors that have a pair
	example	HCF of 240 and 924 $\begin{aligned} & 240=2 \times 5 \times 2 \times 2 \times 3 \times 2 \\ & 924=3 \times 2 \times 7 \times 11 \times 2 \\ & H C F=2 \times 3 \times 2=12 \end{aligned}$
LCM	Of all the multiples of the 2 numbers, its the smallest multiple they have in common	

By peterwongau

cheatography.com/peterwongau/

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 1 of 8 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

1.3 Developing Patterns and Shortcuts (cont)		
Lowest Common Multiple	method	1. factorise 2. multiply the factors that are common and factors they dont have in common
	example	$\begin{aligned} & \text { LCM of } 120 \text { and } \\ & 140 \\ & 120=2 \times 2 \times 2 \times 3 \times 5 \\ & 140=2 \times 2 \times 3 \times 7 \\ & \text { LCM }=2 \times 2 \times 3 \times 2 \times 5 \times 7 \end{aligned}$
Question (find multiples)	Jack, Art, Fran and Megan work as volunteers at the local kennel. Jack gives the dogs baths every 4 days. Art cleans out cages every 6 days. Frand feeds the animals in section b every 2 days. Megan helps the receptionist every 3 days. How many times in 12 weeks will all 4 helpers be at the clinic on the same day?	how to solve Find all the common multiples from 6 days to 84 days (12 weeks) of 4, 6, 2, 3
Question (LCM)	Two buses leave the terminal at 8 am . Bus A takes 60mins to complete its route and Bus B takes 75mins. When is the next time the two buses will arrive together at the terminal (if they are on time)?	how to solve 1. Find LCM of 60 and 75. 2. Add LCM to 8am

1.3 Developing Patterns and Shortcuts (cont)

1.3 Developing Patterns and Shortcuts (cont)
Question Dennis has a choice between two house how to (HCM numbers on Small Street. The two house solve and numbers have their highest common factor LCM) work of 6. Their least common multiple is 36. One of the house numbers is 12. What is the other number?

1.5 Space, Area and Volume

Area of Rectangle	length x width
Area of Triangle	$\mathrm{A}=$ base x height $/ 2$
Volume of Cube	$\mathrm{V}=\mathrm{a}^{3}$ where a is length of a side
Volume of Rectan- gular Prism	$\mathrm{V}=$ length x height x depth
1 m	$=100 \mathrm{~cm}$
Finding Area of Rectangular Shapes	
Method 1	Divide shape into rectangles

By peterwongau
Published 28th May, 2022.
Last updated 30th May, 2022.
Page 2 of 8 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

1.5 Space, Area and Volume (cont)

Method	Extend shape into one	1. Find area of larger
$\mathbf{2}$	larger rectangle	rectangle (X)
		2. Find area of missing
		rectangle (Y)
		3. Larger rectangle (X) -
		Missing rectangle (Y)

1.6 Equations

Pronum- Boxes to store missing numbers

erals

	Letters to represent unknown numbers
	Use \mathbf{x}, y and \mathbf{z}
Rearranging Equations	= is like a balancing scale
	solving an aim of finding the unknown number equation
	rearra- how to solve an equation nging equations

how if we do something to one side, we need to do the same thing to the other side
eg. if we add 3 to one side, we need to add 3 to the other side
eg. if we times by 3 to one side, we need to times by 3 to the other side

+	-
x	$/$

Simult-
if there are 2 unknowns, need 2 equations aneous

Equations

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 3 of 8.

1.6 Equations (cont)

1. Solving by Adding and	example	$5 x-y=4(1)$
Subtracting Equations		$2 x+y=10$
		(1) $+(2)$
		$7 \mathrm{x}=14$
		$x=2$
		$y=6$
	example	$7 x+y=18(1)$
		$2 x+2 y=12(2)$
		(1) $\times 2$
		$14 \mathrm{x}+2 \mathrm{y}=36$ (1a)
		(1a) - (2)
		$12 x=24$
		$x=2$
		$y=4$
2. Solving by Substitution	method	1. rearrange one equation for y
		2. substitute y into other equation
	example	$5 x-y=4(1)$
		$2 x+y=10$ (2)
		rearrange (1)
		$y=5 x-4(1 a)$
		substitute (1a) into
		$2 x+(5 x-4)=10$
		$x=2$
		$y=6$

Turning word problems into an equation

Step 1	What are the Give each a letter, unknowns? $\quad \mathbf{x , y}$
Step 2	Find the equations to solve
Step 3	Solve the simultaneous equations
Example Questions	

The quotient of two numbers is 4 and their difference is 39 . What is the smaller number of the two

The sum of the ages of Alan and Bill is 25 ; the sum of the ages of Alan and Carl is 20; the sum of the ages of Bill and Carl is 31 . Who is the oldest of the three boys and how old is he?

1.7 Probability, Venn Diagrams and Whodunits

1. Certainty Problems

Typical Question	Suppose that there are ten black and ten navy socks in your drawer. Your room is dark and you cannot turn on the light. What is the smallest number of socks that you must take out of your drawer to be certain that you have a pair of the same colour?	Basically, to be certain of "an outcome", what is the smallest number of "actions" required to take
Strategy	Start from smallest and go up	
	1 sock	can't be certain
	2 socks	can't be certain
	3 socks	can be certain
2. Certainty Problems with Restrictions		
Typical Question	As above question, but what is the smallest number of socks needed to ensure we get a pair of black socks	Restriction is it must be black socks
Strategy	Think Worst Case Scenario	
	Worst case is you could in 10 picks, pick socks. 2 more picks you'll be certain to g black socks	only Navy a pair of
	12 socks	can be certain
Venn Diagrams	circle represents sets or groups of things that are same	

1.7 Probability, Venn Diagrams and Whodunits (cont)

Example There are 160 students in Year 5. Of these students, 69 Question walked to school and 57 caught a train to school. If 148 students either walked to school or caught the train, how many students walked and caught a train to school?
Draw a Venn diagram with a circle for students that walked and students that caught the train Where they overlap, are the number of students that walked and caught the train

Whodunits

Strategy Use a table, with different charac- Usually the answer teristics in columns and members needed are the of a group in rows characteristics

Example Martin, Bill and Dave (members of a group) play first Question base, second base, and third base (characteristics) on their school softball team, but not necessarily in that order. Martin and the third baseman took Dave to the movies yesterday. Martin does not play first base. Who's on first base?

By peterwongau

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 4 of 8 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

1.8 Motions, Books, Clocks and Work Problems

1. Motion Problems

distance $=$ rate \times time
Example Two trains leave the same station at the same time, but Question in opposite directions. One train averages $56 \mathrm{~km} / \mathrm{h}$ and 1 the other averages $64 \mathrm{~km} / \mathrm{h}$. How far apart will the trains be when three hours have passed?

Strategy	Step 1	Whats the distance after 1 hr ? (Draw a diagram)
		$56 \mathrm{~km}+64 \mathrm{~km}=120 \mathrm{~km}$
		$56 \mathrm{~km} / \mathrm{hr}+64 \mathrm{~km} / \mathrm{hr}=120 \mathrm{~km} / \mathrm{hr}$
	Step 2	Whats the distance after 3hrs?
		$120 \mathrm{~km} \times 3=360 \mathrm{~km}$
	if opposite direction,	add

Example Suppose that these two trains start from the same station Question at the same time, this time in the same direction. How far 2 apart will the fronts of the trains be at the end of the three hours?

Step 1	Whats the distance after 1 hr ? (Draw a diagram)
	$64 \mathrm{~km} / \mathrm{hr}-56 \mathrm{~km} / \mathrm{hr}=8 \mathrm{~km} / \mathrm{hr}$
	$64 \mathrm{~km}-56 \mathrm{~km}=8 \mathrm{~km}$
Step 2	Whats the distance after 3hrs?
	$8 \mathrm{~km} \times 3=24 \mathrm{~km}$
if opposite direction,	subtract
2. Book Problems	
look at the structure of counting numbers used for book pages	

By peterwongau
cheatography.com/peterwongau/

1.8 Motions, Books, Clocks and Work Problems (cont)

Fact 2	The clock in the problem must gain 12 hours to show correct time again
thus	$\begin{aligned} 12 \mathrm{hrs} \quad & =60 \mathrm{mins} \times 12 \\ & =720 \mathrm{mins} \end{aligned}$
thus	as clock gains 1 min in 1 hr
	720/24=30days
4. Work Problems	
solving using	fractional parts of whole numbers and draw diagrams
Example Question	Paul can do a certain job in 3hrs and John can do the same job in 2hrs. At these rates, how long would it take Paul and John to do this job if they work together
Strategy	Step 1 Draw a diagram for Paul and John. Fractional parts done in each hour
	Step 2 Using the diagram, in one hour they can complete $1 / 3+1 / 2=5 / 6$ of the job
	Step 3 Work out how long to complete job
	1/5 of job left
	$60 \mathrm{~min} / 5=12 \mathrm{mins}$ to complete $1 / 5$ of job
	answer $\quad=1 \mathrm{hr} \mathrm{12mins}$

1.9 Problem Solving Strategies

1. Drawing a picture or diagram

Example The lengths of three rods are $5 \mathrm{~cm}, 7 \mathrm{~cm}$, and 15 cm . How Question can you use these rods to measure a length of 13 cm ?
2. Making an organised list

1.9 Problem Solving Strategies (cont)

Example Five students hold a chess tournament. Each of the Question students plays each of the other students just once. How many different games are played?

3. Making a table

Example Two dice both have faces numbered from 1 through to 6 .
Question Suppose that you role the two dice. What is the probability of rolling a sum of 8 in the uppermost faces?

4. Solving a simpler related problem

Example The houses on Thomas Street are numbered consec-
Question utively from 1 to 150 . How many house numbers contain at least one digit 7 ?

5. Finding a pattern

Example What is the sum of the following series of numbers? Question

6. Guessing and Checking

Example Arrange the counting numbers from 1 to 6 in the circles
Question so that the sum of the numbers along each side of the triangle is 10 .

1.10 Problem Solving Strategies

1. Acting out the problem

Example Suppose that you buy a rare stamp for \$16, sell it for Question $\$ 22$, buy it back for $\$ 30$, and finally sell it for $\$ 35$. How much money did you make or lose?

2. Working backwards

Example At the end of a school day, a teacher had 15 crayons left.
Question The teacher remembered giving out 13 of all her crayons in the morning, getting 8 back at recess, and giving out 9 crayons after lunch. How many crayons did the teacher have at the start of the day?

By peterwongau
cheatography.com/peterwongau/

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 6 of 8 .

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet

by peterwongau via cheatography.com/133991/cs/32226/

1.10 Problem Solving Strategies (cont)

3. Writing an Equation	
Example Question	The triple of what number is sixteen greater than the number?
4. Changing your point of view	Change your approach
	Are you assuming something thats not in the question
Example Question	Draw four continuous line segments through the nine dots
5. Using Reasoning	
Example Question	A school has 731 students. Prove that there must be at least 3 students who have the same birthday.
6. Miscellaneous	
Example Question	Three apples and two pears cost 78 cents. But two apples and three pears cost 82 cents. What is the total cost of one apple and one pear?

2.1 Logical Approach to Problem Solving

4 Steps to Problem Solving

Step 1	Understand the problem	
Step 2	Develop a plan	choose a problem solving strategy

Step 3 Carry out the plan
Step 4 Reflect
Mathematical Terms used in the Olympiad

Standard Form	1358	
Expanded Form	$1 \times 1000+3 \times 100+5 \times 10+8 \times 1$	
Exponential Form	$1 \times 10^{3}+3 \times 10^{\wedge} 2+5 \times 10+8 \times 1$	
Whole numbers	0,1,2,3, ..	
Counting numbers	1,2,3, \ldots	
Divisibility	A is divisible by B, if B divides into A with zero remainder	If so, B is a factor of A

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 7 of 8 .

2.1 Logical Approach to Problem Solving (cont)

Prime number	counting number greater than 1 , which is divisible only by itself and
Composite number	counting number greater than 1 which is divisible by a counting number other than 1 and itself
A number is factored completely	when it is a product of prime numbers
Order of Operation	BODMAS
common or simple fraction	a / b where a and b are whole numbers and b is no zero
unit fraction	common fraction with a numerator of 1
proper fraction	a / b where $\mathrm{a}<\mathrm{b}$
improper fraction	a / b where $\mathrm{a}>\mathrm{b}$
complex fraction	numerator or denominator contains a fraction
20th century	100 year period 1901-2000 inclusive
average of a set of N numbers	sum of the N numbers divided by N
acute angle	less than 90 degrees
right angle	90 degrees
obtuse angle	greater than 90 degrees
straight angle	180 degrees
reflex angle	more than 180 degrees and less than 360 degrees
scalene triangle	no equal angles
isosceles triangle	2 equal angles
equilateral	3 equal angles
right-angled	90 angle

By peterwongau

[^0]
2.1 Logical Approach to Problem Solving (cont)

congruent	shapes on the same plane whose sides and angles
shapes	are the same

2.2 Types of Problems

1. translate word sentences to mathematical sentences

Transl-
ation
Problems
Example Farmer Joe bought 2 bags of feed for $\$ 4$ each and 1 bag
Question of feed for $\$ 3$. How much did the feed bags cost altoge- ther?
2. Applic- 'real-world' problems, usually involve calculations with ation money, to find discounts, profits or cost of items
Problems
Example Shop A is offering a 10% discount on 34 cm colour TV Question sets priced normally at $\$ 379$. Meanwhile Shop B is offering 15% discount on the same sets priced normally at $\$ 409$. Which shop should you purchase the TV from?
3. Usually require using general problem solving steps and
Process specific strategies. May use short-cuts when aware of

Problems patterns
Example The first 4 triangular numbers are 1, 3, 6, 10. What will
Question the 10th triangular number be?
4. Puzzle like riddles

Problems
Example Three Australian students who were born in different Question countries have last names Brown, Black and Bright. Their first names are Jim, John and Jane but not necessarily in that order. Using the information below can you determine the full name of each student?
Brown was born in Australia
Bright has never been to Malaysia
Jane was born in England
Jim was born in Malaysia

Published 28th May, 2022.
Last updated 30th May, 2022.
Page 8 of 8 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

[^0]: cheatography.com/peterwongau/

