Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.1 Shortcuts in	Computation		1.2 Number	Logic			
1. Quicker Counting	Grouping numbers that add up to 5 or 10	73+74+27+26 =(73+27)+(74+26)	Properties of Numbers		Primes	factor	of 1 and itself only
Methods	Round off numbers that are close to 5 or 10	73+74+27+26 =75 -2 +75-	Divisbility R	ules	Composites Divisibility rule of 2	EVEN	s other than itself vith 0,2,4,6,8
2. Sum of	For patterns where:	1+25 +2 +25 +1 1. rewrite sum in		Divisibility rule of sum of 3 by 3		f its digits divisble	
numbers that form a pattern	numbers increase/dec- rease by same value	reverse order underneath 2. pair up and sum			Divisibility rule of 4	digits divisible by 4	
		 sums of pairs are the same 			Divisibility rule of 5	vith 0 or 5	
		4. Since sums are the same, multiple sum by		Divisibility rule of EVE 6			AND divisible by 3
		number of pairs			Divisible by 8	last 3	digits divisible by 8
	Example:	5. Divide by 2 Find 2+4+6++78+80			Divisible by 9	sum o by 9	f its digits divisble
		2+4+6++78+80		Divisible by 10 end		ends v	vith 0
		2+4+6++78+80 80+78++6+4+2 82*40=3280 3280/2=1640	Squared Numbers		NxN=N ²	eg 2x2	
			Cubed Nurr	nbers	NxNxN=N ³	eg 2x2	2x2=2 ³ =8
			1.3 Developing Patterns and Shortcuts				
3. Quicker Muliplication Methods	Remember numbers in their expanded form	2+4+6++78+80= 1640 3526=3000+500+20+6	Factor- ising Numbers	express	expressed as a product of prime numbers		250 =2x125 =2x5x25 =2x5x5x5
	3.1 Multiples of 10	30x25		Find pri	me factors		
		=3x10x25	HCF	largest	counting number tha	s into both exactly	
	3.2 Multiples of 5	=3x250 =750 25x6 =5x5x6 =5x30 =5x3x10	Highest Common Factor	method			 factorise multiply the factors that are common only those factors that have a pair
		=15x10 =150		example		·	HCF of 240 and 924 240= 2 x5x 2 x2 x3 x2 924= 3 x 2 x7x11x 2 HCF=2x3x2=12
			LCM	Of all th	e multiples of the 2	number	s, its the smallest

multiple they have in common

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 1 of 8.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.3 Develo	ping Patterns and Shortcuts (cont)		1.3 Develo	ping Patte	rns and Shortcuts (cont)		
Lowest Common Multiple	method	 factorise multiply the factors that are common and factors they dont have in common 	Question (HCM and LCM)	numbers numbers of 6. The	as a choice between two on Small Street. The two have their highest comm ir least common multiple e house numbers is 12. V number?	house on factor is 36.	how to solve work backwards
	example	LCM of 120 and 140	1.4 Logic Deduction				
		120 =2x2x2x3x 5 140 =2x2x3x 7 LCM =2x2x3 x2x5x7	Logic Deduction Problems	lf need t first	o add groups of things, u	se biggest	numbers
Question (find multiples)	Jack, Art, Fran and Megan work as volunteers at the local kennel. Jack gives the dogs baths every 4 days. Art cleans out cages every 6 days. Frand feeds the animals in section b every 2 days. Megan helps the receptionist every 3 days. How more times in 12	how to solve Find all the common multiples from 6 days to 84 days (12 weeks) of 4, 6, 2, 3	Question	Question What is the minimum number of coins needed to make \$4.85 from only 5c, 20c, 50c coins		coins firs	0c
	days. How many times in 12 weeks will all 4 helpers be at the				worse case scenario te standard case		
Question	clinic on the same day? Two buses leave the terminal at	how to solve		0	ations between numbers	down	
(LCM)	8am. Bus A takes 60mins to complete its route and Bus B	1. Find LCM of 60 and 75. 2. Add	1.5 Space, Area and Volume				
	takes 75mins . When is the next	LCM to 8am	Area of Re	ctangle	length x width		
	time the two buses will arrive		Area of Tri	angle	A = base x height / 2	height / 2	
	together at the terminal (if they		Volume of	Cube	$V = a^3$ where a is lengt	h of a side	
	are on time)?	Volume of Rectar gular Prism		V = length x height x d	V = length x height x depth		
			1m		= 100cm		
			Finding Are	ea of Recta	angular Shapes		
			Method 1		Divide shape into rectangles	Find area find total	of each and

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 2 of 8. Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.5 Space.	Area and Volu	ime (cont)		1.6 Equations (cont)		
Method E	Extend shape into one 1. Find ar larger rectangle 2. Find ar rectangle 3. Larger		ind area of missing	1. Solving by Adding an Subtracting Equations	d example	5x - y = 4 (1) 2x + y = 10 (1)+(2) 7x = 14 x = 2 y = 6
1.6 Equatio Pronum- erals Rearra-	Boxes to st Letters to re Use x , y ar	ore missing num epresent unknow nd z palancing scale			example	7x + y = 18 (1) 2x + 2y = 12 (2) (1) x 2 14x + 2y = 36 (1a) (1a) - (2) 12x = 24 x = 2
nging Equations	solving an equation		he unknown number	2. Solving by Substitution	on method	y = 4 1. rearrange one equation for y 2. substitute y into other equation
	rearra- nging equations	need to do the side eg. if we add 3 add 3 to the oth	omething to one side, we same thing to the other to one side, we need to		example	5x - y = 4 (1) 2x + y = 10 (2) rearrange (1) y = 5x - 4 (1a) substitute (1a) into (2) 2x + (5x - 4) = 10 x = 2 y = 6
		to times by 3 to		Turning word problems	into an equation	
	+ X	-		Step 1	What are the unknowns?	Give each a letter, x , y
Simult- aneous Equations	if there are	2 unknowns, nee	ed 2 equations	Step 2 Step 3 Example Questions	Find the equat Solve the simu	ions to solve Iltaneous equations
				The quotient of two num the smaller number of the The sum of the ages of Alan and Carl is 20; the the oldest of the three b	he two Alan and Bill is 25; the sum of the ages of Bil	sum of the ages of I and Carl is 31. Who is
С			Published 28th May, 2 Last updated 30th Ma Page 3 of 8.			crosswords!

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.7 Probability, Venn Diagrams and Whodunits			1.7 Probat	ility, Venn Diagrams and Whodunits	(cont)	
1. Certainty Typical Question	Problems Suppose that there are ten black and ten navy socks in your drawer. Your room is dark and you cannot turn on the	Basically, to be certain of "an outcome",	Example Question	There are 160 students in Year 5. C walked to school and 57 caught a tr students either walked to school or many students walked and caught a	ain to school. If 148 caught the train, how	
	light. What is the smallest number of what is the socks that you must take out of your drawer to be certain that you have a number of "-actions" required to take		Draw a Venn diagram with a circle f walked and students that caught the Where they overlap, are the numbe	e train		
		required to	Whodunits			
Strategy	Start from smallest and go up 1 sock	can't be	Strategy	Use a table, with different charac- teristics in columns and members of a group in rows	Usually the answer needed are the characteristics	
	2 socks	certain can't be certain	Example Question	Martin, Bill and Dave (members of a gro base, second base, and third base (char their school softball team, but not neces	(characteristics) on	
	3 socks	can be certain		order. Martin and the third basemar movies yesterday. Martin does not l	baseman took Dave to the	
2. Certainty	Problems with Restrictions			on first base?		
Typical Question	As above question, but what is the smallest number of socks needed to ensure we get a pair of black socks	Restriction is it must be black socks				
Strategy	Think Worst Case Scenario					
	Worst case is you could in 10 picks, pick socks. 2 more picks you'll be certain to ge black socks					
	12 socks	can be certain				
Venn Diagrams	circle represents sets or groups of things	that are same				

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 4 of 8. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.8 Motion	s, Books, Clocks a	and Work Problems		1.8 Motion	s, Books, Clo	ocks and Work Problems (cont)
1. Motion F	1. Motion Problems			Example	A printer us	es an old-style printing press and needs one
distance	tance = rate x time				type for each digit in the page numbers of a	
Example	Two trains leave the same station at				book. How many 2s will the printer need to print page numbers from 1 to 250	
Question	Question in opposite directions. One train av 1 the other averages 64 km/h. How f		-	consider the numbers place by place		lace by place
be when three hours have passed?					number of 25 times 2s appear in	
Strategy	ategy Step 1 Whats the dist diagram)		e after 1hr? (Draw a			
		56km + 64km = 12	20km	the 1s		
		56km/hr + 64km/h	nr = 120km/hr		place	00
	Step 2	Step 2 Whats the distance after 3hrs?			number of times 2s	30
		120km x 3 = 360k	m		appear in	
	if opposite direction,	add			the 10s place	
Example Question 2	at the same time apart will the from hours?	uppose that these two trains start from the same station the same time, this time in the same direction. How far eart will the fronts of the trains be at the end of the three burs?			number of times 2s appear in the 100s place	51
	Step 1	Whats the distanc diagram)	e after 1hr? (Draw a		answer	=25+30+51
		64km/hr - 56km/h	r = 8km/hr			=106
		64km - 56km = 8k	m	3. Clock P		
	Step 2	Whats the distance	e after 3hrs?	elapse time	amount of time that has passed	
	if opposite	8km x 3 = 24km		solve	facts about time	
	direction,			using		
2. Book Pr	oblems			Example Question		ock gains one minute of time every hour. If nows the correct time now, in how many
look at the structure of counting numbers used for book pages			or book pages	Queenon		next show the correct time again without
				Fact 1	A clock that has stopped	Will show the correct time every 12 hrs. As it stopped at 6.03am on Monday. It was correct at the time it stopped. It will be correct again, when the time is at 6.03pm
		Published 28th May, 20 Last updated 30th May Page 5 of 8.			Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com	

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

1.8 Motion	s, Books, Clocks	s and Work Problems (cont)		
Fact 2	The clock in the problem must gain 12 hours to show correct time again			
thus	12 hrs	=60mins x 12 = 720mins		
thus	as clock gains 1 min in 1hr	the clock will gain 720min in 720hrs		
		720/24=30days		
4. Work Pr	oblems			
solving using	fractional parts	of whole numbers and draw diagrams		
Example Question	Paul can do a certain job in 3hrs and John can do the same job in 2hrs. At these rates, how long would it take Paul and John to do this job if they work together			
Strategy	Step 1	Draw a diagram for Paul and John. Fractional parts done in each hour		
	Step 2	Using the diagram, in one hour they can complete $1/3 + 1/2 = 5/6$ of the job		
	Step 3	Work out how long to complete job		
		1/5 of job left		
		60min / 5 = 12mins to complete 1/5 of job		
	answer	=1hr 12mins		
1.9 Problem Solving Strategies				

1. Drawing a picture or diagram

ExampleThe lengths of three rods are 5cm, 7cm, and 15cm. HowQuestioncan you use these rods to measure a length of 13cm?

2. Making an organised list

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 6 of 8.

Example Five students hold a chess tournament. Each of the

1.9 Problem Solving Strategies (cont)

Question	students plays each of the other students just once. How many different games are played?				
3. Making a table					
Example Question	Two dice both have faces numbered from 1 through to 6. Suppose that you role the two dice. What is the probab- ility of rolling a sum of 8 in the uppermost faces?				
4. Solving	a simpler related problem				
Example Question	The houses on Thomas Street are numbered consec- utively from 1 to 150. How many house numbers contain at least one digit 7?				
5. Finding	a pattern				
Example Question	What is the sum of the following series of numbers?				
6. Guessin	g and Checking				
Example Question	Arrange the counting numbers from 1 to 6 in the circles so that the sum of the numbers along each side of the triangle is 10.				
1.10 Proble	em Solving Strategies				
1. Acting o	ut the problem				
Example Question	Suppose that you buy a rare stamp for \$16, sell it for \$22, buy it back for \$30, and finally sell it for \$35. How much money did you make or lose?				
2. Working	backwards				
Example Question	At the end of a school day, a teacher had 15 crayons left. The teacher remembered giving out 13 of all her crayons in the morning, getting 8 back at recess, and giving out 9 crayons after lunch. How many crayons did the teacher have at the start of the day?				

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

	em Solving Strategies (cont)		2.1 Logical Appro	ach to Problem Solving (cont)
3. Writing an Equation		Prime number	counting number greater than 1, which	
Example	The triple of what number is sixte	en greater than the		only by itself and
Question	number?		Composite	counting number greater than 1 which i
4.	Change your approach		number	by a counting number other than 1 and
Changing your point			A number is factored	when it is a product of prime numbers
of view			completely	
	Are you assuming something that	ts not in the question	Order of	BODMAS
Example	Draw four continuous line segmer	nts through the nine	Operation	
Question	dots		common or	a/b where a and b are whole numbers a
5. Using Re	easoning		simple fraction	zero
Example	A school has 731 students. Prove		unit fraction	common fraction with a numerator of 1
Question	least 3 students who have the sar	me birthday.	proper fraction	a/b where a < b
6. Miscellar			improper fraction	a/b where a > b
Example Question	Three apples and two pears cost		complex	numerator or denominator contains a fra
Question	ion apples and three pears cost 82 cents. What is the total cost of one apple and one pear?		fraction	numerator or denominator contains a fra
			20th century	100 year period 1901-2000 inclusive
2.1 Logical	Approach to Problem Solving			
Jiedi			average of a set	sum of the N numbers divided by N
	Problem Solving		average of a set of N numbers	sum of the N numbers divided by N
	Problem Solving Understand the problem		0	sum of the N numbers divided by N less than 90 degrees
4 Steps to I	-	choose a problem	of N numbers	
4 Steps to I Step 1 Step 2	Understand the problem Develop a plan	choose a problem solving strategy	of N numbers acute angle	less than 90 degrees
4 Steps to I Step 1 Step 2 Step 3	Understand the problem Develop a plan Carry out the plan		of N numbers acute angle right angle	less than 90 degrees 90 degrees
4 Steps to I Step 1 Step 2 Step 3 Step 4	Understand the problem Develop a plan Carry out the plan Reflect		of N numbers acute angle right angle obtuse angle	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic	Understand the problem Develop a plan Carry out the plan Reflect cal Terms used in the Olympiad		of N numbers acute angle right angle obtuse angle straight angle reflex angle	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard	Understand the problem Develop a plan Carry out the plan Reflect		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form	Understand the problem Develop a plan Carry out the plan Reflect cal Terms used in the Olympiad 1358		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard	Understand the problem Develop a plan Carry out the plan Reflect cal Terms used in the Olympiad		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form Expanded	Understand the problem Develop a plan Carry out the plan Reflect cal Terms used in the Olympiad 1358		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle equilateral	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles 3 equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form Expanded Form	Understand the problem Develop a plan Carry out the plan Reflect al Terms used in the Olympiad 1358 1x1000+3x100+5x10+8x1		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form Expanded Form	Understand the problem Develop a plan Carry out the plan Reflect al Terms used in the Olympiad 1358 1x1000+3x100+5x10+8x1		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle equilateral	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles 3 equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form Expanded Form Expanded Form Whole numbers	Understand the problemDevelop a planCarry out the planReflectI Terms used in the Olympiad13581x1000+3x100+5x10+8x11x10 ³ +3x10 ² +5x10+8x10,1,2,3,		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle equilateral	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles 3 equal angles
4 Steps to I Step 1 Step 2 Step 3 Step 4 Mathematic Standard Form Expanded Form Expone- ntial Form	Understand the problemDevelop a planCarry out the planReflectCarrs used in the Olympiad13581x1000+3x100+5x10+8x11x10 ³ +3x10^2+5x10+8x1		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle equilateral	less than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles 3 equal angles
4 Steps to I Step 1 Step 2 Step 2 Step 4 Standard Form Expanded Form Expanded form Whole numbers Counting	Understand the problemDevelop a planCarry out the planReflectI Terms used in the Olympiad13581x1000+3x100+5x10+8x11x10 ³ +3x10 ² +5x10+8x10,1,2,3,		of N numbers acute angle right angle obtuse angle straight angle reflex angle scalene triangle isosceles triangle equilateral	Iess than 90 degrees 90 degrees greater than 90 degrees 180 degrees more than 180 degrees and less than 36 degrees no equal angles 2 equal angles 3 equal angles

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 7 of 8. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Mathematics Olympiad Cheat Sheet by peterwongau via cheatography.com/133991/cs/32226/

2.1 Logical	Approach to Problem Solving (cont)
congruent shapes	shapes on the same plane whose sides and angles are the same
2.2 Types of	of Problems
1. Transl- ation Problems	translate word sentences to mathematical sentences
Example Question	Farmer Joe bought 2 bags of feed for \$4 each and 1 bag of feed for \$3. How much did the feed bags cost altoge- ther?
2. Applic- ation Problems	'real-world' problems, usually involve calculations with money, to find discounts , profits or cost of items
Example Question	Shop A is offering a 10% discount on 34cm colour TV sets priced normally at \$379. Meanwhile Shop B is offering 15% discount on the same sets priced normally at \$409. Which shop should you purchase the TV from?
3. Process Problems	Usually require using general problem solving steps and specific strategies. May use short-cuts when aware of patterns
Example Question	The first 4 triangular numbers are 1, 3, 6, 10. What will the 10th triangular number be?
4. Puzzle Problems	like riddles
Example Question	Three Australian students who were born in different countries have last names Brown, Black and Bright. Their first names are Jim, John and Jane but not necessarily in that order. Using the information below can you determine the full name of each student? Brown was born in Australia Bright has never been to Malaysia Jane was born in England Jim was born in Malaysia

C

By peterwongau

Published 28th May, 2022. Last updated 30th May, 2022. Page 8 of 8. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com