
Rails Refactoring Recipes Cheat Sheet
by Andrzej Krzywda (pawelpacana) via cheatography.com/20181/cs/3027/

Explicitly render views with locals

1. Go to the view, replace all @ivar with var

2. Do the same in all partials that are called from the view and always
pass the params to partials explicitly with render " ​pro ​duc ​ts/ ​for ​m",
{product: product}

3. At the end of the action add an explicit render call with a full path and
the locals: render " ​pro ​duc ​ts/ ​new ​", :locals => {product:
product}

4. Find all contro ​llers that were using the views/ ​par ​tials that you changed
and apply the same.

Extract render ​/re ​direct methods

1. Identify all render and redirect calls in your contro ​ller's actions.

2. Extract a private method for each render and redirect call you

found with descri ​ptive name that shows your intention.
3. Find and remove any duplicated methods you might created during this
refact ​oring in the same contro ​ller.

Extract a Single Action Controller class

1. A new route declar ​ation above the previous (first wins)
2. Create an empty controller which inherits from the previous
3. Copy the action content to the new controller
4. Remove the action from the previous controller
5. Copy the filter ​s/m ​ethods that are used by the action to the new
controller
6. Make the new controller inherit from the Appli ​cat ​ion ​Con ​tro ​ller
7. Change routes to add excep ​t: ​[:f ​oo_ ​act ​ion]

Extract routing constraint

1. Go to the contro ​ller, duplicate existing action method under different
name.
2. Create a constraint that can recognize which action should be called.
Put it in route ​s.rb
3. Duplicate the relevant routing rule in route ​s.rb
4. Protect first routing rule with the constr ​aint.
5. Change the second routing rule so it delegates to the new controller
action. If necessary, protect it with similar constr ​aint.
6. Remove the irrelevant code from controller actions. Make them do only
one thing.
7. (Optio ​nally) Move the constr ​aint(s) to separate file(s).

 

Extract a repository object

1. Create a class called Produ ​cts ​Rep ​osi ​tory inside the same file as

the controller
2. Find all calls to typical Produ ​ct.f ​in ​d/a ​ll/ ​new ​/sa ​ve/ ​create
methods in the controller
3. Create those methods in the repo object
4. Add a private method, called repo in the controller (possibly in the
Appli ​cat ​ion ​Con ​tro ​ller) where you instan ​tiate the repo.

5. Move the repository class to app/r ​epos/

Extract a service object using the Simple ​Del ​egator

1. Move the action definition into new class and inherit from
Simpl ​eDe ​leg ​ator.
2. Step by step bring back controller respon ​sib ​ilities into the contro ​ller.
3. Remove inheriting from Simpl ​eDe ​leg ​ator.
4. (Optional) Use exceptions for control flow in unhappy paths.

Extract an adapter object

1. Extract external library code to private methods of your controller
2. Parame ​trize these methods - remove explicit request / params /
session statements
3. Pack return values from external lib calls into simple data struct ​ures.
4. Create an adapter class inside the same file as the controller
5. Move newly created controller methods to adapter (one by one),
replace these method calls with calls to adapter object
6. Pack exceptions raised by an external library to your exceptions
7. Move your adapter to another file (ex. app/ad ​apt ​ers ​/yo ​ur_ ​ada ​pte ​r.rb)

By Andrzej Krzywda
(pawelpacana)
cheatography.com/pawelpacana/
rails-refactoring.com/recipes

 

Published 11th December, 2014.
Last updated 12th December, 2014.
Page 1 of 1.

 

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/pawelpacana/
http://www.cheatography.com/pawelpacana/cheat-sheets/rails-refactoring-recipes
http://www.cheatography.com/pawelpacana/
http://rails-refactoring.com/recipes
http://crosswordcheats.com

	Rails Refactoring Recipes Cheat Sheet - Page 1
	Explicitly render views with locals
	Extract a repository object
	Extract a service object using the Simple­Del­egator
	Extract render­/re­direct methods
	Extract an adapter object
	Extract a Single Action Controller class
	Extract routing constraint


