Cheatography

mechanics Cheat Sheet by Pamsj10 via cheatography.com/196052/cs/41168/

Linear momentum - mass system

Reynold's Theorem: the bridge. Mass system to control volume. Lagrang to Eulerian	if t=t: Bsys=Bcv, CV=Sys, occupy the same
	space
extensive quatities (B): depend on the size of the region. If $B = m$ then b = 1 If $B = \Box$	if t=t +∆t, Bsys≠ Bcv, Cv≠Sys, we use
$\Box v$ then b = v	Reynolds here.
intensive quantities (b): independent of the size	Flow rate: Q=Av, if p is constant→mass flow
	rate

Reynolds formula

find Reproduis transport theorem :

when a moving CV we have w as the relative velocity. w= vbvcs1

Forces acting on fluids

 $\sum_{i} \hat{f}_{indy} = \int_{\bigcirc} \rho f \, dV : \text{Act on each element with the body/fluid, applied to the whole of } \\ \sum_{\bigcirc} \hat{f}_{indy} = \int_{\bigcirc} \rho f \, dV : \text{Act on each element with the body/fluid, applied to the whole of } \\ \sum_{\bigcirc} \hat{f}_{indytor} = \int_{\bigcirc} \rho h \, du \quad \text{Act on each element on the control surface laters comes from the bolance of linear momentum} \end{pmatrix}$

$dP/dt=\Sigma Fsys=\Sigma Fcv$, where

P=mv:momentum

How to set up a	cv problem
whats happening, whats gonna cause. What are we trying to solve.	To draw CV: we think of where you biserts-cut into 2 parts
In volume: be within the boundaries of CV. Area integral: must bisect the boundarie- s/surface of CV	Accummula- tion? In which integral are we looking. Does the quality act on the surface. Align the flow with dirt vector,

mass vs linear momentum

Balance of	Balance of
Mass:	Linear
Finding flow	Momentum:
rates, the	Finding relatshs
relationship	btnw flow
velocities	properties and
and areas.	forces. Vector. (-
Scalar. (-/+)	/+) from scalar
from scalar	product or direct
product	of vector
	quantities

B of mass in B of linear momentum problems to find unknown.

By Pamsj10

cheatography.com/pamsj10/

Not published yet. Last updated 5th November, 2023. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com