eatography

Some Helpful Big Oh Analysis

Expansion Summation Big Oh
1+2+3+4+....+ N N(N+1)/2 O(N"2)
N+N+N+....+N N*N O(N"2)
N+N+N+....+N+....+N+. 3N*N O(N"2)
.+N

142+4+....+ 27 (N+1)-1 O(2"N)

Common Data Structure Operations

Data Stucture

Time Complexty
Average Worst

‘Space Complexity

Search Insertion Deletion
)

20 = 1024 ~~ 1000
O- notation is an upper bound so N is O(N) but
it is also O(N"2)

Order of Growth Classifications

+ Observation. A small subset of mathematical
functions suffice to describe running time of many
fundamental algorithms.

public void g(int N) {
if (N == 0) return;
g(N/2) ;
g(N/2);
for (int i = 0; i < N; i++

)

log,v While (N > 1) { Nlog,N
. N=N/2;

)
v for (int i = 0; i < N; i+)

public void £(int N) {

for (int i = 0; i < N; i+4) » if (N == 0) return;
» A a :
for (int j = 0; j < N; j++) £(N-1);

£(N-1) ;

}

Usually, nested for loops have a big O(N"2)
because each of them runs n times. However,
sometimes they can run less than n times.

for (int i =0; i<N; i++) ---> N times
for (intj =1; j<n; j-j*2)

Big O is n* log n times

Big Oh Complexity

Big-O Complexity Chart
FiFribie] (£ad) Fair) (ood) [ERERTIERE

Elements

By Paloma

cheatography.com/paloma/

Arrays vs ArrayLists

Arrays ArrayLists

They
have

Size can change

a fixed
size
Much
faster
to add
to

Adding to an arraylist is usually N

But when you reach the max, the
computer doubles the limit every time
you hit the limit so it takes O(N) times
--> This is why it takes longer

Circular Linked Lists

ListNRev revisited“— circular

public ListNode nlistCirc(int n) {
if (n <= 0) return null;

ListNode first = new ListNode(n);

ListNode last = first;

for(int k=0; k < n-1; k++) {
last.next = new ListNode(n);
last = last.next;

last.next|= first;
return last;

Published 30th April, 2018.
Last updated 30th April, 2018.
Page 1 of 9.

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Binary Search Tree

Binary Tree

Root: the starting
point of the tree

D

Subtree: any
part of the
treeisalsoa
tree. Thisisa

Node 5 s the
“parent” of node 2.

Node 2 node 5's
“left child”

Leaf: a node that left
has no child nodes

Internal
node: a node
that has 1 or
2 children

- Each node has a value

- Nodes with the values less than their parent
are in the left

-Nodes with values greater than their parent
are in the right subtree

- If equal, choose a side and stay consistent
- Insert from top of binary search tree and
move down

Binary Tree Insertion

What does insertion look like?

« Simple recursive insertion into tree (accessed by root)
root = insert("foo", root);

TreeNode insert(TreeNode t,
if (t == null) t = new
Tree(s,null,null);
else if (s.compareTo(t.info) <= 0)

t.left = insert(t.left,s);
else

t.right =
return t;

}
Appending Lists

Appending Lists

String s) {

insert(t.right,s);

TLNode append(TLNode a, TLNode b) {
if (a == null) return b;
if (b == null) return a;

// Go to end of list a

TLNode aTail = a;

while (aTail.right != null)
aTail = aTail.right;

// What's true about aTail here?

join(aTail, b);

return a;

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522035265_Screen Shot 2018-03-25 at 11.32.22 PM.png
/uploads/paloma_1522332887_Screen Shot 2018-03-29 at 10.14.02 AM.png
/uploads/paloma_1522332934_Screen Shot 2018-03-29 at 10.14.12 AM.png
/uploads/paloma_1522635682_Screen Shot 2018-04-01 at 10.20.31 PM.png
/uploads/paloma_1522636383_Screen Shot 2018-04-01 at 10.29.39 PM.png
/uploads/paloma_1522642303_Screen Shot 2018-04-02 at 12.11.01 AM.png
/uploads/paloma_1522675224_Screen Shot 2018-04-02 at 9.19.52 AM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

- Heap is an array-based implementation of a

atography

Tree to List binary tree used for implementing priority r @ (7
« ioida do W tdete queues and supports: insert, findMin, and (17) @ @ @D
public static TLNode treeToList(TLNode root) { .
// base case deleteMin @ @ R
if (root == null) insert 8 6
TLNZ(‘)Z‘;“E;f?)‘;Jéh;e = treeToList(root.left); 'USing array minimizes Storage (no explicit
TLNode afterMe = treeToList(root.right); . f t t b h||dr & @ o
// TODO What do you need to do here? pomters) o IERIET 12D (SR U @ &l &l m @ o @
return root; locatd by index/position in array
}
’ Deletion: remove root and replace with right
. - bubble 8 up
most child and then bubble down filling left to
-Trees: are nodes with two pointers right
-Doubly linked lists: also nodes with two -Properties:
pointers (allows for constant time access with - shape: tree filled at all levels (except perhaps ‘ @
one pointing to front and one pointing to back) last) and filled in left-to-right (complete binary @ @
tree
Complete Binary Tree - value: each node has value smaller than both
children - To maintain heap shape, must add new value
- Every non leaf node has two children .)) P P
Min Heap: in left-to-right order of last level
- All the leaves are at the same level Vel N -, Wvivlate "
- Minimal element is at root, index - This could violate heap prope
- There are 2N -1 or O(2N) nodes with N levels i i Sl
) -Maximal element has to be a leaf, because - move value "up" if too small
- There are 2N-1 leaves with n levels .) . . .
can't be greater than child - Change places with parent if heap property is
-Complexity of finding maximal elements, half violated and stop when parent is smaller and
Priority Queues nodes are trees --> O(n/2) so O(n) stop when root is reached
eriorityouenecintegers p - new - Second smallest element must be one level -Pull parent down
1/ ada a1l Slemene From it to pg below root

Using An Array For a Heap

for (int elem : list)
pq.add(elen); .
for (int index = 0; pg.size() > 0; index++) Heap Add |mp|ementat|on
// remove minimum remaining element
list{index] = pg.poll(); .

void add(ArrayList<Integer> list,

- Minimum is first out . int elt) {
L . // add elt to heap in myList
-Poll means remove the minimum each time . }ist. add(elt);
-List [0] will be smallest @G int loc = list.size();
Li . . n ® 6 @
-List [1] is smallest of all the ones that remain @ @ while (1 < loc &&
-While a queue is first in first out, a priority elt < list.get(loc / 2)) {
L t first list.set(loc, list.get(loc/2))
QUEUCHSITRNERIOCHITS - Store node values in array starting at index 1 // go to parent
-Shortest path - For node with index k: loc = loc / 2;
}
- left child: index 2"k // What’s true here?
-right child: index 2*k +1) list.set(loc, elt);
- parent: index k/2
By Paloma Published 30th April, 2018. Sponsored by CrosswordCheats.com
cheatography.com/paloma/ Last updated 30th April, 2018. Learn to solve cryptic crosswords!

Page 2 of 9. http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522675007_Screen Shot 2018-04-02 at 9.16.22 AM.png
/uploads/paloma_1522639616_Screen Shot 2018-04-01 at 11.26.42 PM.png
/uploads/paloma_1522684604_Screen Shot 2018-04-02 at 11.56.30 AM.png
/uploads/paloma_1522684800_Screen Shot 2018-04-02 at 11.59.45 AM.png
/uploads/paloma_1522684902_Screen Shot 2018-04-02 at 12.00.44 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

eatography

Tries

Depth-first search on Graphs

- Tries support add, contains, delete in O(w)
time for words of length w
- Each node in a trie has a subtrie for every

public Set<Graph.Vertex> dfs(Graph.Vertex start){
Set<Graph.Vertex> visited = new TreeSet<Graph.vertex>();
Stack<Graph.Vertex> qu = new Stack<Graph.Vertex>();
visited.add(start);
qu.push(start);

valid letter than can follow

while (qu.size() > 0){
Graph.Vertex v = qu.pop();
for (Graph.Vertex adj : myGraph.getAdjacent(v)){
if (! visited.contains(adj)) {
visited.add(adj);

Priority Queue Implementations

qu.push(adj);
}
Y

¥

return visited;

Getmin
(delete)

Insert Getmin | Insert
average | (peek) worst

Unsorted ArrayList | O(1) O(n) om O(m)

Sorted ArrayList O(n) o) O(n) oy
O(m)
O(log n)

Heap O(logm) | O(1) O(log n)

Envision each vertex as a room

Balanced binary O(logn) | O(log n)/ | O(log n)
search tree o)

Oosm Go into a room, mark the room, choose an

e Heap has O(1) find-min (no delete) and O(n) build heap unused door, exit

Don't go into room you've already been in-->

Operations: O(log n)
add - add element to last spot and bubble up

explore every vertex one time
qu is where we're going, visited is where we've

remove/poll - remove root.min and take last been

Adjacency Lists and Matrix

For example, consider the following graph:

element and bubble down

Graphs Vocabulary

- A collection of vertices and edges
- Edge connections two vertices
- Direction can be imported, directed edge,

directed graph 11,2]
7,

- Edge may have associated weight/cost Eg;?
1,

- A vertex sequence is a path where vk and
And the adjacency matrix is:
vk+1 are connected by an edge
LLFTTF],
[TFTT],
[rTFT],
[FTTFI1]

- If some vertex is repeated, the path is a cycle
- A graph is connected if there is a path

Where F and T represent boolean variables.

between any pair of vertices

-Articulation Point breaks graph in two
e Adjacency List: V+E spaces

Adjacency Matrix: V*E

+ Simple, O(n?) sorts --- for sorting n elements
« Selection sort --- n> comparisons, nswaps, easy to code
« Insertion sort --- n2 comparisons, n* moves, stable, fast
« Bubble sort --- n* everything, slow, slower, and ugly
« Divide and conquer faster sorts: O(n log n) for n elements
* Quick sort: fast in practice, O(n?) worst case
« Merge sort: good worst case, great for linked lists, uses
extra storage for vectors/arrays
+ Other sorts:
* Heap sort, basically priority queue sorting, Big-Oh?
« Radix sort: doesnt com];?are keys, uses
digits/characters O(dn+kd)
« Shell sort: quasi-insertion, fast in practice, non-
recursive Oczn"s)

By Paloma Published 30th April, 2018.
Last updated 30th April, 2018.

Page 3 of 9.

cheatography.com/paloma/

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Creating Adjacency Matrix

public int howLong (String []

connects, String [] costs) {

int [] [] adjMatrix = new int
[connects.lengthl]
[connects.length] '
for (int i =0;
i<connects.length; i++) {
String [] edges -
connects [i[.split (" ");

String [] weights =

costs[i] .split (™ ");
for (int j =0;
j<edges.length; j++) {

adjMatrix[i] [Inte
ger.partselnt (edges[j])) =

Integer.parselnt (weights[j]) ;

Analysis: Empirical vs. Mathematical

Empirical Mathematical Analysis
Analysis

Measure Analyze algorithm to estimate #
running ops as a function of input size
times, plot,

and fit curve

Easy to May require advanced

perform mathematics

experiments

Model useful ~ Model useful for predicting and
for explaining

predicting,

but not for

explaining

Mathematical analysis is
independent of a particular
machine or compiler; applies to
machines not yet built.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522685029_Screen Shot 2018-04-02 at 12.03.01 PM.png
/uploads/paloma_1525015482_Screen Shot 2018-04-29 at 11.24.26 AM.png
/uploads/paloma_1525017331_Screen Shot 2018-04-29 at 11.53.47 AM.png
/uploads/paloma_1525018564_Screen Shot 2018-04-29 at 12.09.32 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

eatography

Comparators

Let's assume that the natural ordering of Employee instances is Name ordering (as
defined in the previous example) on employee name. Unfortunately, the boss has
asked for a list of employees in order of seniority. This means we have to do some
work, but not much. The following program will produce the required list.

import java.util.*;
public class EmpSort {
static final Comparator<Employee> SENIORITY ORDER =

new Comparator<Employee>() {

public int compare(Employee el, Employee e2) {
return e2.hireDate().compareTo(el.hireDate());
¥
i

// Employee database
static final Collection<Employee> employees = ... ;

public static void main(String(] args) {
Li e = new ArrayLi)i
Collections.sort (e, SENIORITY_ORDER);
system.out.println(e);

Comparators

- Can't always access comparable method

(implements .compareTo and uses
Collections.sort and Arrays.sort)

-Sometimes must implement comparators in

which you pass two objects

- Must implement .compare(T a, T b)
- Return <0 when a<b

- Return ==0 when a ==b

Return >0 when a>b

Comparator Example

public class Dirsort {
© public class Directories{
String folderName;
Integer depth;
B public Directories(String k) {
folderName=k;
depth=counter(k);

¥
E public int counter(String k) {
int counter=0;
for (int i=0; i<k.length(); i+){
if (k.charAt(id="/") {
counter-+al;

¥
Jreturn counter;|
¥

E public String getFolderName() {
return folderName;

i
E public int getDepth() {
return depth;
¥

¥
= public String[] sort(String[] dirs) {
int counter =0;
Directories [directoriesOrdered= new Directories [dirs.lengthl;
for (String k: dirs)
i i [counter]= new Di tes(k);

counter +=1;

Comparator<Directories> comp = Comparator. comparing(Directories: :getDepth);

comp = comp. thenComparing(Directories: :getFolderName);

Arrays.sort (directoriesOrdered, comp);

string [] array = new String[dirs.length];

for (int i=0; i<directoriesOrdered.length; i++) {
array[il= directoriesOrdered[i].getFolderName();

return array;

Comparator Example

public class SortByFreas {
public class Fruits {
String fruit;
int count;
public Fruits(string k, Tnteger v) {
=k

count = vi

public String getFruitO {
return fruit;

public int getCount() {

b
public StringC] sort(Stringt] data) {
Map<String, Integers myliop = nen TreeHap<string, Integers);
for (int i= @; i<data.length;
if(lmyMap. containsKey(data[i1)) {
myMap. put(datali], @);
JF (. containskeyCcatali1)
. putCdatalil, mhlp. geCdotali13);
¥

int counter =0;
Fruits [fruit - new Fruits [map.sizeOl;
For (String k: map.keysec()) {
fruitlcounter] < nen Frdts G, slop.9et00) §

” Comparator<Fruits> somp = Conparator. conparing(Fru ts: :getFruit).reversed(;
” o, = comp. thenComparing(Fruits: :getCount);
2 i - Comparator. conpar +getCount; 405

Linked List vs. ArrayList

Linked List ArrayList Both

Separate A collection Collection

elements in of
memory that all elements in
have pointers to order in

each other memory

Add,

remove, for
loops, sort
themselves,
clear

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Linked List vs. ArrayList (cont)

Remove N Time

First because you

Element: don't have to
shift something
when it is in the
front of the list

Remove Has a higher

Middle coefficient and

Index thus is slower:
To get there
takes time but
to remove it is
instantaneous
:O(N)

Best for
adding/removin
g front

N”2 Time
because
everything stores
sequentially so
when you take
something out
you have to shift
everything by 1

Faster: To get to
middle element
is
instantanenous
but to remove it
you have to shift
it: O(N)

Best for
adding/removing
something from
back/middle

of elements

comp=conp. thenComparing(Fruits: :getFruit);
Arrays. sort(fruit, com);

String [1 array = nen String[myMap.sizeQ)];
For (int i-0; i<fruit.length; is+) {
arraylile Fruitlil.getFruit()

return array;

By Paloma Published 30th April, 2018.
Last updated 30th April, 2018.

Page 4 of 9.

Sponsored by CrosswordCheats.com
cheatography.com/paloma/ Learn to solve cryptic crosswords!

http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522036669_Screen Shot 2018-02-22 at 12.26.32 PM.png
/uploads/paloma_1522801826_Screen Shot 2018-04-03 at 8.28.49 PM.png
/uploads/paloma_1522801617_Screen Shot 2018-04-03 at 8.26.28 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

Cheatography

Trees

Good Search Trees and Bad Trees

If you have N nodes, height is asking how many
times you can divide by 2 --> expressed as the
log base 2 of n

Good search tree is height is log n

Bad search tree is n

Balanced if left and right subtrees are height
balanced and left and right heights differ by at
most 1

Autocomplete

-BruteAutocomplete: stores data as a Term
array and finds the top k matches by iterating
through the array and pushes all terms starting
with the prefix into a max priority queue sorted
by weight and returns the top k terms from that
priority queue

- not compared by weight and o organization
-topMatches: O(n+mlogm)

- topMatch: O(n)

-lImproving BruteAutocomplete:

- had to iterate through every single term in the
array because it did not know where the terms
starting with the prefix were located aka array
was unsorted.

- If we sort the array lexicographically, then all
the terms with the same prefix will be adjacent
(Sorting takes O(n log n)

By Paloma

cheatography.com/paloma/

Autocomplete (cont)

- Term: encapsulates a word/term and its
corresponding weight
-BinarySearchAutocomplete:finds Terms
with a given prefix by performing a binary
search on a sorted array of Terms
-TrieAutocomplete: finds Terms with a given
prefix by building a trie to store the Terms. To
be efficient should only look at words whos
maxsubtree weight is greater than the
minimum

Autocomplete: Term class

- The term class encapsulates a comparable
word weight pair

- WeightOrder: sorts in ascending weight
order

-ReverseWeightOrder: sorts in descending
weight order

-PrefixOrder: which sorts by the first r
characters

-If one or both words are shorter than r, we just
use normal lexicographical sorting

- compare method must take O(r)

Autocomplete: Binary Search

- Find all the range of all the terms comparator
considers equal to key

- Quickly return the first and last index
respectively of an element in the input array
which the comparator considers to be equal to
key

Published 30th April, 2018.
Last updated 30th April, 2018.
Page 5 of 9.

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Autocomplete: Binary Search (cont)

- We specify the first and last index because
there could be multiple Terms in which the
comparator consider to be equal to key

- Collections.binary search does not guarantee
first index of terms that match key, it gives an
index

Autocomplete: Tries

- To completely eliminate terms which don't
start with prefix, store in trie

- Navigate to the node representing the string.
The trie rooted at this node only contains
nodes starting with this trie

- No matter how many words are in our trie,
navigating this node takes the same amount of
time

Autocomplete: Big-Oh

Class TopMat TopMatches
ch

BruteAutocomplet O(n) O(mlogm + n)

e

BinarySearchAuto O(log(n) O(log(n) + (m +

complete +m) k)log(k))

TrieAutocomplete O(w) O(w)

n: number of terms in total

m: number of terms that match the prefix
k: desired number of terms

w: number of letters in the word

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522639172_Screen Shot 2018-04-01 at 11.19.00 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

1) = 2@ + 0 0(2)

Huffman: Compressing

Compressing

public void compress(BitInputStream in,
BitOutputStream out)

1. readForCounts: counts the number of occurrences of
each character

2. makeTreeFromCounts: constructs the Huffman tree

3. makeCodingsFromTree: generates the encodings for
each character

4. writeHeader: writes the magic number and a pre-
order traversal of the Huffman tree

5. writeCompressedBits: writes the encoded bits for
each character \n‘the uncompressed text

« Check if correct?

«/E9

Huffman: Decompressing

Decompressing

public void decompress(BitInputStream in,
BitOutputStream out)
. Check that file is compressed? Read magic number.
. readTreeHeader: Recreate tree from header
. readCompressedBits: Parse compressed data from
input stream and write decoded output to output stream

w N

Check if correct?

Good Center - Has the most people closest to
them

Chooses the best path, lowest number of edges
Actor Actor Representation//Vertices: actors
or actresses//Edges: Two actors are adjacent
(joined by a graph edge) if and only if they
appear in the same movie

Movie Movie Representation// Vertices:
Movies//Edges: Two movies are adjacent if they
share a cast member

Actor Movie Representation//Vertices:

Actors, actresses, and movies// Edges: An
actor is connected to a movie if he or she
appeared in that movie

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Bacon Number

LIFO

FIFO

1. Most vertices: Actor to movie

a. All of the vertices you had in actor to actor
and all vertices in movie

to movie

2. Most edges: Actor to Actor

Efficient sorting algorithms are usually
recursive

Base Case: does not make a recursive call
For Linked Lists: Base case is always empty
list or singular node/Recursive calls make
progress toward base case (list.next as
argument)

Erdos Number Part 2

public MapeString, Set<Strings> getAdiList(String[] pubs) {
MapeString, Set<Strings> adilist - nen Trechap<String, Set<String»O;
/1000 complete adijList

Jes Tength;j++) {
1F (tadiList. containskey(subPubs(i1D) {
adjlist.putCsubPubs(3], new TreeSeteString>());

b

String from = subPubs(il;

For int k = 05 kesubPubs. length; k)

i Q=D

String o = suoPubs[kl;
addEdge(adiList, fron, to);

3

3

3

return adilist;

public Set<String> bfs(String start) {

new TreeSet<String>(;
en LinkedList<StringsO;

Graphs BFS

BFS compared to DFS

http://bit.1y/201-s18-0413-1

public Set<Graph.Vertex> bfs(Graph.vertex start){
Set<Graph.Vertex> visited = new TreeSet<Graph.Vertex>();
Queue<Graph.Vertex> qu = new LinkedList<Graph.Vertex>();
visited.add(start);
qu.add(start);

while (qu.size() > 0){
Graph.vVertex v = qu.remove();
for (Graph.Vertex adj : myGraph.getAdjacent (v)){
if (! visited.contains(adj)) {
visited.add(adj);

qu.add(adj);
}
¥

}
return visited;

Visit everything that is one away, then
everything that is two away...

Used to find shortest distance

takes a lot of space --> BAd

By Paloma

cheatography.com/paloma/

qu.add(start);
myDistance.put(start, 0;

while Cau.sizeQ) >) {

String v — qu.renove();

7/ Note: checks to nake sure vertex is in gragh

¥ (nyGraph. containskey(v))

For (String adj : myGraph.get(v)) {
iF (ivisited.contains(adi)) {

isited. add(ad?);
myDi stance.putCadi, myDistance.get(v) + 13;
au.odd(ads);

3

3
/Systen.out.print(mybistance);
retum visited;

Published 30th April, 2018.
Last updated 30th April, 2018.
Page 6 of 9.

Percolation Overview

- System percolates if top and bottom are
connected by open sites

- Given a NxN grid, where each is site is open
with probability p*, what is the probability that
the system percolates?

- if p>p*, system most likely percolates

- if p< p*, system does not percolate

-All simulations, whether using
PercolationDFS, PercolationDFSFast, or
Percolation UF with any implementation of
union-find will be at least O(N2)

- Finding the threshold

- Initialize NxN grid of sites as blocked

- Randomly open sites until system percolates
- Percentage of pen sites gives an
approximation of p*

How do you get random cells to open and
not open same shell more than once:

- Make points out of the cells

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522713797_Screen Shot 2018-04-02 at 8.02.39 PM.png
/uploads/paloma_1525014655_Screen Shot 2018-04-29 at 11.10.04 AM.png
/uploads/paloma_1525014680_Screen Shot 2018-04-29 at 11.10.11 AM.png
/uploads/paloma_1525015810_Screen Shot 2018-04-29 at 11.27.51 AM.png
/uploads/paloma_1525018540_Screen Shot 2018-04-29 at 12.14.47 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

Cheatography

Percolation Overview (cont)

- Shuffle them gets a random ordering of all the
point where each one

occurs once time

- Go through and repeatedly open each

Percolation Solution 1: Depth First Search

- Try searching from all of the open spots on the
top row

- Search from all legal adjacent spots you have
not visited

- Recurse until you can't search any further or
have reached the bottom row

- Try all the legal adjacent spots (what makes it
recursive is that we do the

same problem but at a different place)

- Base Cases:

- Out of bounds

- Blocked

- Already full/visited

PercolationDFS sets each grid cell to OPEN
and runs a DFS from each open cell in the top
(index-zero) row to mark the cells reachable
from them as FULL. In the new model
PercolationDFSFast, you'll make this
implementation more efficient by only checking
the cell being opened to see if it results in more
FULL cells, rather than checking every cell
reachable from the top row.

-Percolation DFS and DFSFast run in O(N)
because it iterates through only the bottom row
to check if it is full

- Why is this an Improvement: An
improvement because we don't have to search
from the top:

- Don't have to start from the top and go down
- For the cells that are adjacent, now search
from that spot

- If one of my neighbors is full, | am full

-Don't have to redfs things you've already seen
Methodology:

Percolation DFS Fast

. Create a grid

. Set them all to blocked

. Protected void updateOnOpen

. Clear everything from being full

. Dfs checks base cases

. If not in bounds, return

o 0O OO~ W N =

. If cell is full or not open, return
Otherwise try all neighbors recursively

By Paloma

cheatography.com/paloma/

Percolation Solution 2: Union- Find

- Create an object for each site (each cell)
(Vtop as N*N, Vbottom as N*2 +1)

- Percolates if vtop is connected to vbottom

- One call that you have to make --> union find
- For every cell, give it an index

- Becomes problematic when n is too long
QuickUWPC:

- Look at ultimate parent making path short to
find parent at constant time

- Run time is O(1) because we simply check if
vtop and vbottom are in the same set

Published 30th April, 2018.
Last updated 30th April, 2018.
Page 7 of 9.

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Percolation DFSFast

Percolation Solution 2: Union- Find (cont)

-lUnionFInd.find is called from both connected
and union to find sets that p and g belong to

Percolation Method Score Board

Scoreboard

» Weighted quick union and/or path compression
leads to efficient algorithm order of growth for

initialize + M union-

Algorithm Worst-case time set OfNObjECls
e I]
quick-union MN . o
weighted QU N+Mlog N 7 3
QU + path compression N+Mlog N " 2
weighted QU + path N+Mig* N 16 3
compression EN+M ess3 |4

Visit left sub-tree, process root, visit right
subtree

Increasing order

- Follow path and In order is when you do
outline and you hit it the second time

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522631219_Screen Shot 2018-04-01 at 9.04.16 PM.png
/uploads/paloma_1522675751_Screen Shot 2018-04-02 at 9.28.19 AM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

1eatography

Tree Traversals PreOrder
- ‘
L) |

Process root, then visit left subtree, then visit

right subtree

Good for reading/writing trees

- When you follow the outline and preorder is
just when you hit it for the first time

Tree Traversals: PostOrder

Visit left subtree, right subtree, process root
Good for deleting trees
When you follow the outline and postorder is
when you hit it going up

By Paloma

cheatography.com/paloma/

Recursion with ListNodes in return

statement

public ListNode<Integer> convertRec
(ListNode<String> list) :

if (list == null) return null;
return new ListNode<Integer>

(list.info.length,

convertRev (list.next) ;

Doubly Linked Lists

List Node first = new ListNode

<"cherry", null, null>;

List Node fig = new ListNode
<nfig", first, null>;

List Node mango = new ListNode
<"mango", fig, null>;
first.right = fig;

fig.right = mango;

Data Compression

Types:

Lossless: Can recover exact data

Lossy: Can recover approximate data

- Use when you don't care, photos can't tell the
difference, can compress it

more
.0 0 1 1 0 1
25 2 T T2 T2 2

otal is 8+4+1 =13

Published 30th April, 2018.
Last updated 30th April, 2018.
Page 8 of 9.

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Huffman: Text Compression

In the trie, 0 is left, 1 is right

Make the ones that occur most often the
shortest path

Ones that rarely occur can be long

Ones that never occur can be as long as we
want

Look at it 8 bits at a time

Building: Combine minimally weighted trees -->
Greedy

Bad Huffman Tree: when different character
occurs once

Good Hufman Tree: One character occurs
multiple times

Alphabet size and run time and compression
rate:

- Alphabet size has a big impact on run time
because alph size tell syou how big the tree will
be

- The number of leaves is equal to the size of
your allphabet, so you have 2"k nodes in your
tree

- Amount of compression is frequency that it
occurs

o 256 characters that occur the same amount
of time is bad compression

o Huffman takes advantage of the fact that
some characters occur more often than others

Creating Huffman Tree

Creating a Huffman Tree/Trie?

« Insert weighted values into priority queue
+ What are initial weights? Why?

+ Remove minimal nodes, weight by sums, re-insert
« Total number of nodes?

PriorityQueue<Hu
for (int i =

ffNode> forest = new PriorityQueue<>();
1< 256; i++)

cies[i] > 0 mputed
t.add(new HuffNode(i, frequen

Huf fNode remo
forest.add(new HuffNode(-1,
left

}

HuffNode root = forest.remove();

lweight ()+right.veight(),
)

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/paloma_1522675945_Screen Shot 2018-04-02 at 9.32.09 AM.png
/uploads/paloma_1522676114_Screen Shot 2018-04-02 at 9.34.58 AM.png
/uploads/paloma_1525010830_Screen Shot 2018-04-29 at 10.03.10 AM.png
/uploads/paloma_1525013071_Screen Shot 2018-04-29 at 10.43.40 AM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

Cheatograph

Huffman: TreeTighten APT

1 public class TreeTighten
{
- public TreeNode tighten(TreeNode t)
{

3
4

5 iFCt == null 11 (t.left == null && t.right == null))
6 return t;

7 if(t.left = null)

8 t = tighten(t.right);

9 else if(t.right == null)

10 t = tighten(t.left);

11 else

13 t.left = tighten(t.left);
14 t.right = tighten(t.right);
15 3}

16 return t;

Big Oh for Huffman Encodings

Computer Science Midterm 2 Cheat Sheet
by Paloma via cheatography.com/55343/cs/15271/

Actor Movie Graph

public void createActorMovieGraph() {
for (Movie m : myMovies.values())
for (Actor a : m.getActors())
myG.addEdge (m.name, a.name);

DFS Recursion

Public void recursive(Graph.Vertex start,
TreeSet<Graph.Vgrtex> visited) {

visited.add(start);

for(Graph.Vertex adj: myGraph.getAdjacent(start)) {
if (1 visited.contains(adj) {
recursive(adj,visited);

Encoding

Given a file with:
* ncharacters
« an alphabet of k distinct characters,
« ris the compression rate (bits/character)
Count occurrence of all occurring characters O(

2. Build priority queue O klg

3. Build Huffman tree O klg)
4. Create Table of encodings from tree O)
5. Write Huffman tree and coded data to file [o]]

Read in tree data: O(k)
Decode bit string with tree: O(n)

Actor Actor Graph

public void createActorGraph() {
for (Actor a : myActors.values())
for (Actor b : a.coStars().keySet())
myG.addEdge (a.getName(), b.getName());

Movie Movie Graph

I v

public void createMovieGraph() {
for (Movie m : myMovies.values())
for (Actor a : m.getActors())
for (Movie otherMoov : a.getMovies())
if (otherMoov != m)
myG.addEdge (m.name, otherMoov.name);

By Paloma

cheatography.com/paloma/

os Number Part 1

public class ErdosNunber {

myGraph = new P . 9>0;
Map <String, Integer> myDistance = new TreeMap <String, Integer> (;
public String(] calculateNunbers(String[] pubs) {
77 T000 complete calculateNumbers
myGraph = getAdiList(pubs);

//for debugging your getAdjlist
//printMap(myGraph);

/7 000 initialize distances for every author

/7 Traverse the graph starting at Erdos,
bfSC'ERDOS™);

7/ TO0D0 construct answer array
int count = 0;
String [J ret = new String [myGraph.keySetQ). sizeO];
int i= 0
for (String k: myGraph. keySetQ) {
{(myDistance. containsKey(i)) {
ret[il= ke " " + myDistance.get(k);
else ¢
ret[i] = ki
¥
¥
Feturn ret;
3
private void addEdge(Map<String, Set<String>> adjlList, String from, String to) {
iF (ladiList.containsKey(From) {
adjlist.putCfron, new TreeSet<String>());
¥
adiList.get(From). add(t0);

if (ladjList.containsKey(t)) {
adjlist.put(to, new TreeSet<String>());

1
adjlist.get(to).add(Fron);

Creating Adjacency Matrix

public int howLong (String []

connects, String [] costs) {

int [] [] adjMatrix = new int
[connects.length]
[connects.length] '
for (int i =0;
i<connects.length; i++) {
String [] edges -
connects [i[.split (" ");
String [] weights =
costs [i] .split (™ ");
for (int j =0;
j<edges.length; j++) {
adjMatrix[i] [Inte
ger.partselInt (edges[j])) =

Integer.parselnt (weights[j]) ;

Published 30th April, 2018. Sponsored by CrosswordCheats.com
Last updated 30th April, 2018.

Page 9 of 9.

Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/paloma/
http://www.cheatography.com/paloma/cheat-sheets/computer-science-midterm-2
/uploads/megphibbs_1525017767_Screen Shot 2018-04-29 at 12.01.24 PM.png
/uploads/paloma_1525013299_Screen Shot 2018-04-29 at 10.45.19 AM.png
/uploads/paloma_1525016642_Screen Shot 2018-04-29 at 11.43.39 AM.png
/uploads/paloma_1525016670_Screen Shot 2018-04-29 at 11.44.05 AM.png
/uploads/paloma_1525016697_Screen Shot 2018-04-29 at 11.44.33 AM.png
/uploads/paloma_1525017809_Screen Shot 2018-04-29 at 12.02.45 PM.png
/uploads/paloma_1525018517_Screen Shot 2018-04-29 at 12.14.38 PM.png
http://www.cheatography.com/paloma/
http://crosswordcheats.com

	Computer Science Midterm 2 Cheat Sheet - Page 1
	Some Helpful Big Oh Analysis
	Common Data Structure Operations
	Binary Search Tree
	Arrays vs ArrayLists
	Order of Growth Classi­fic­ations
	Binary Tree Insertion
	Circular Linked Lists
	Appending Lists
	Big Oh Complexity

	Computer Science Midterm 2 Cheat Sheet - Page 2
	BSTS to Lists
	Heaps
	Adding Values to Heap
	Complete Binary Tree
	Priority Queues
	Heap Add Implem­ent­ation
	Using An Array For a Heap

	Computer Science Midterm 2 Cheat Sheet - Page 3
	Tries
	Graphs DFS
	Creating Adjacency Matrix
	Priority Queue Implem­ent­ations
	Adjacency Lists and Matrix
	Analysis: Empirical vs. Mathem­atical
	Graphs Vocabulary
	Sorting

	Computer Science Midterm 2 Cheat Sheet - Page 4
	Compar­ators
	Comparator Example
	Compar­ators
	Linked List vs. ArrayList
	Comparator Example

	Computer Science Midterm 2 Cheat Sheet - Page 5
	Trees
	Autoco­mplete: Tries
	Autoco­mplete: Term class
	Autoco­mplete: Big-Oh
	Autoco­mplete
	Autoco­mplete: Binary Search

	Computer Science Midterm 2 Cheat Sheet - Page 6
	Common Recurr­ences and Their Solutions
	Bacon Number
	Stacks
	Queue
	Huffman: Compre­ssing
	Recursion
	Percol­ation Overview
	Huffman: Decomp­ressing
	Erdos Number Part 2
	Graphs BFS

	Computer Science Midterm 2 Cheat Sheet - Page 7
	Percol­ation DFSFast
	Percol­ation Method Score Board
	Percol­ation Solution 1: Depth First Search
	Tree Traversals InOrder
	Percol­ation Solution 2: Union- Find

	Computer Science Midterm 2 Cheat Sheet - Page 8
	Tree Traversals PreOrder
	Recursion with ListNodes in return statement
	Huffman: Text Compre­ssion
	Doubly Linked Lists
	Tree Traver­sals: PostOrder
	Data Compre­ssion
	Creating Huffman Tree
	Bytes

	Computer Science Midterm 2 Cheat Sheet - Page 9
	Huffman: TreeTi­ghten APT
	Actor Movie Graph
	DFS Recursion
	Big Oh for Huffman Encodings
	Erdos Number Part 1
	Actor Actor Graph
	Creating Adjacency Matrix
	Movie Movie Graph

