
Common Practices for REST API Development Cheat Sheet
by Paladuta Stefan via cheatography.com/139860/cs/30803/

Accept and respond with JSONAccept and respond with JSON

JSON is the standard for transf​erring data. Almost every networked
technology can use it: JavaScript has built-in methods to encode and
decode JSON either through the Fetch API or another HTTP client.
Server​-side techno​logies have libraries that can decode JSON
without doing much work.

To make sure that when our REST API app responds with JSON that
clients interpret it as such, we should set Conten​t-Type in the
response header to applic​ati​on/json after the request is
made. Many server​-side app frameworks set the response header
automa​tic​ally. Some HTTP clients look at the Conten​t-Type response
header and parse the data according to that format.

NOTE: Spring Boot offers great support for responding with json or
xml format, without effort.

Use nouns instead of verbs in the endpoint pathUse nouns instead of verbs in the endpoint path

Nouns represent the entity that we are trying to recover or
manipulate in pathname. Verbs should be avoided because they are
already present, they are the HTTP requests types: GET,
POST,DELETE, PUT, etc.

Adding verbs in API pathname doesn't add more value, it makes the
pathname even more longer and doesn't help in the descri​​ption of
the API.

Good examples:
[GET] /api/books
[GET] /api/book
[POST] /api/book

Bad examples:
[GET] /api/g​etA​llBooks
[GET] /api/g​etBook

Using plural in resources namingUsing plural in resources naming

We should name collec​​tions with the plural form of the nouns,
because it's very common when you want to recover a list of
resources to also want to recover one resource from that list and vice
versa.

We use the plural form to be consistent with what is in your
database. A table has more than one entity​​/r​ecord and we as
developers should name our endpoint in such a way to reflect this, or
more formally to be consis​​tent.

Exampl​e(s):
/api/b​ook​/{id} and /api/books
/api/a​cco​unt​/{id} and /api/a​ccounts
/api/p​ers​on/{id} and /api/p​ersons

Versioning the APIVersioning the API

 

Allow filtering, sorting & paginationAllow filtering, sorting & pagination

A database behind a REST API can be very big and that means that
it's not always a good idea to return everything to the client, because
it may slow down the system. In these cases we must offer the client
some filtering options based on what he specif​​ically wants.
Filtering and also pagination grows the perfor​​mance of your REST
API because it doesn't make the system to compile the entire
database of resources in the response.

Example:
http:/​/ex​amp​le.c​om​/ar​tic​les​/?s​ort​=+a​‐
uth​or,​-da​tep​ubl​ished
Where + means ascending.
Where - means descen​ding.

A response body should never contain HTTP infoA response body should never contain HTTP info

We should avoid completely putting HTTP inform​​ation into the
response body.

We don't need to tell the caller of the API in the response body that
the API worked with 200 OK or 404 NOT FOUND (etc.).

Our API should be capable in case of error to fail with an HTTP
correct status. And not offer confusing inform​​ation in the response
body like failing with 200 OK

Example of bad responseExample of bad response
{
 ​ ​ ​"​sta​tus​" : "​200​",
 ​ ​ ​"​res​ponse: "​OK",
 ​ ​ ​"​id" : 1,
 ​ ​ ​"​nam​e" : Stefan
 ​ ​ ​"​age​" : 25
}

Use and maintain good security practicesUse and maintain good security practices

Use SSL/TLS for security.
Introd​​ucing a SSL certif​​icate on a server is not difficult, actually
presents a really low cost and there is no reason not to make our API
that can be called publicly (even private) secured.

http://www.cheatography.com/
http://www.cheatography.com/paladuta-stefan/
http://www.cheatography.com/paladuta-stefan/cheat-sheets/common-practices-for-rest-api-development


We should always version our API's as good practice. Versioning is
something that clients appreciate and offers them more trust when
using your API, because you will not enforce modifi​cation on their
side for each major implem​​en​t​ation update on your API, but instead
they are going to migrate to your new version only when they are
ready.

Example:
https:​//a​ppg​ate​way.li​dlp​lus.co​m/a​pp/​‐
v19​/RO​/ti​cke​ts/​list/ where v19 shows the version
number.

By Paladuta StefanPaladuta Stefan
cheatography.com/paladuta-
stefan/

 

Published 2nd November, 2022.
Last updated 2nd November, 2022.
Page 1 of 2.

 

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/paladuta-stefan/
https://readable.com

	Common Practices for REST API Development Cheat Sheet - Page 1
	Accept and respond with JSON
	Allow filtering, sorting & pagination
	A response body should never contain HTTP info
	Use nouns instead of verbs in the endpoint path
	Use and maintain good security practices
	Using plural in resources naming
	Versioning the API


