Common Conversions		
2^{10}	10^{3}	Kilo
2^{20}	10^{6}	Mega
2^{30}	10^{9}	Giga
2^{40}	10^{12}	Tera

Information Display	
K	10^{3} bytes
Kib, KB (i=information)	2^{10} bytes

Number Formulas	
Max value represented by an \mathbf{n} bit number	$2^{\mathbf{n}}-1$
Max value in range of fractions	$\left(2^{n}-1\right) / 2^{\mathbf{n}}$
n number of bits to represent number \mathbf{x}	$\log (\mathbf{x}) / \log (2)$
Digits to store \mathbf{n} in binary	$\log (\mathbf{n}) / \log (2)$
Digits to store \mathbf{b} bit binary number in BCD	$4 x\left[\log \left(2^{\mathbf{b}}\right)\right]<$-brackets are rounded up

Complements	
(r-1)'s Complement of \mathbf{n}, where \mathbf{d} $=$ number of digits	$\left(r^{d}-1\right)-\mathbf{n}$
1's Complement	Complement each bit Start from right until 1. Then, take complement.
2's Complement	$r^{d}-n$
For base R, R's complement of n	

Signed Arithmetic

If the value is negative, take the 2's complement. Then, add both values together.

Sampling temps from $-x$ to y. n bits per sample

$y--x=\mathbf{Z}$
$\log (\mathbf{Z}) / \log (\mathbf{n})=\mathbf{F}$
Then use F as a base to find "binary" value

Boolean Algebra Rules	
$\mathrm{X}+1=1$	Annulment
$\mathrm{X}+0=0$	Identity
$\mathrm{X}^{*} 1=\mathrm{X}$	Identity
$\mathrm{X}^{*} 0=0$	Annulment
$X+X=X$	Idempotent
$X^{*} \mathrm{X}=\mathrm{X}$	Idempotent
$\left(X^{\prime}\right)^{\prime}=\mathrm{X}$	Double Negation
$X+X^{\prime}=1$	Complement
$X^{*} X^{\prime}=0$	Complement
$X+Y=Y+X$	Commutative
$X Y=Y X$	Commutative
$X^{\prime}+X^{\prime}=X^{\prime} X^{\prime}$	deMorgan's Theorem
$X^{\prime} X^{\prime}=X^{\prime}+X^{\prime}$	deMorgan's Theorem
$X+X Y=X$	Absorption
$X(X+Y)=X$	Absorption
Associative Law	Distributive Law
Can think of AND as series, and OR as parallel	
Cost Criteria	
literals+non-single terms + unique complemented literals	
Ex: ABCD $+A^{\prime} B^{\prime} C^{\prime} D^{\prime}$	
$(8)+(2)+(4)=14$	

Flip Flop Characteristic Tables

Sequential Analysis

Write all of the inputs for each flip-flop. Make a state table.

By ozzyfisk0
cheatography.com/ozzyfisk0/

Not published yet.
Last updated 12th December, 2019. Page 1 of 2.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish
Yours!
https://apollopad.com

State Reduction

If two states have the same inputs and outputs, you can remove one. Remember to change the variable if it appears elsewhere.

Counters	
Synchronous Counters	have a common clock
Ring counter	circular shift register

Types of PLD's	
No fishbones, 4×16 decoder	PLA (Programmable Logic Array)
Fishbones, x 's	4×2 ROM
No fishbones, 2×4 decoder	PAL (Programmable Array Logic)
Fixed ORs, same inputs	Else, find terms normally
When finding terms, if X on 1, NOT all terms	

Parity	
EVEN Function	generates ODD parity
ODD Function	generates EVEN parity

By ozzyfisk0
cheatography.com/ozzyfisk0/

Not published yet.
Last updated 12th December, 2019.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

