Binomial Nomenclature		
Domain	Eukarya	
Kingdom	Animalia	
Phylum	Arthropoda	
Class	Insecta	
Order	Coleoptera	
Family	Chrysomelidae	
Genus	Leptinotarsa	
Species	Leptinotarsa decemlineata	
This example is for the Colorado potato		
beetle		

Zoology - Ecdysozoa

Secretes the exoskeleton → discontinuous growth → molt (ecdysis), preceded by apolysis → displacement of the epidermis from the old exoskeleton It includes: Euarthropoda (Insecta, Crustacea,

Myriapoda,

iviynapoda,

Chelicerata, Trilobita*) arthropod-like Onychophora,Tardigrada Nematoda Nematomorpha Priapulida

Kinorhyncha Loricifera

Phylum Arthropoda

Subphyla	Trilobitomorpha, Chelicerata, Myriapoda, Crustacea, Hexapoda
Class	Entognata, Ectognata (Insecta)
Subclass	Apterygota, Pterygota

Origin of wings theories

Tergal	Wings originated from an
origin	expansion of dorsal body wall
hypothesis	(tergum)
Pleural	Wings were derived from
origin	epicoxal hendites and exites
hypothesis	

By **Nymphaeacat** (Nymphaeacat)

Origin of wings theories (cont)

Dual origin	Contribution of both tergal and
hypothesis	pleural components during
	the evolution of insect wings

Insects' Ecos	system service	es
Provis- ioning	material or energy outputs	Carbon absorp- tion, control of pathogens, pest control, pollin- ation, soil fertility
Supporting	mainte- nance of ecosystem	decomposition, seed dispersal, recycling
Regulating	directionality processes	of ecosystem
Cultural	educat- ional, spiritual, aesthetic value	bioindicators

Pollination have an economic value of \$235 to \$577 billion per year worldwide

Ecological species concept		
Species=	Group of organisms that occupy the same ecological niche	
This means that	species are kept separated by the selection for niche adapta- tion, not by the reproductive isolation	
Cons	Different developmental species inhabit different ecological niches	

What is a DNA Barcode

Short standardized DNA markers for the taxonomic indentification

It has to be variable among species, not within species

They do not necessarily meet the requirements for DNA metabarcoding: many species have to be identified simultaneously

Primers:

1. annealing region highly conserved within the target group

2. annealing region not conserved in nontarget organisms

Sampling	
Community DNA	DNA extracted from a pool of individuals
Enviro- nmental DNA	Mixture of genomic DNA for example soil, litter, water

Homogenization and filtering

eDNA	
Interc- ellular DNA	from living cellls or living multicellular organisms
Extrac- ellular DNA	derives from cell death

Ecological factors	
Stenoe- cious	 → organism that can tolerate a narrow range of variability, it can live only in a restricted range of habitats
Euriecious	→ organism that can tolerate a wide range of variability and can live in a wide range of habitats

Published 24th September, 2021. Last updated 30th September, 2021. Page 1 of 7. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

Entomology Cheat Sheet

by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Entomology Cheat Sheet by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Ecological factors (cont)

Ecological	→ how a specie interacts within
niche	an ecosystem

Hutchinson (1957) \rightarrow 2 forms of niche:

Fundamental niche = focused in the abiotic conditions in which a specie could exist with no ecological interactions

Realized niche = population's existence in the presence of interactions

Biotic potential

It's the maximum reproductive capacity of an organism in optimal environmental conditions

It's limited by: unfavourable environmental conditions, inhibiting effects or predators, parasites, diseases

It's expressed as a % increase per year or as the doubling time

What limits the growth of populations		
Ecores- istance	space, food resources, abiotic factors, biotic factors	
Biotic factors:	Intraspecific or extraspecific	
Intraspec- ific:	Competition for food or reproduction	
Diapause	it's an endogenously regulated dormant state to survire seasons of adverse conditions. It can be obligatory (genetically determined) or facultative	
Quiescence	immediate response to a change in the environment	
Extraspec- ific:	parasitoids, predators, diseases	

Insect-plant interactions

Direct	act directly on the phytophagous
defence	to reduce the feeding perfor-
	mance. Example: Anti-nutritional
	factors (induced) and Antixe-
	nosis or physical barriers (const-
	itutive)
Indirect	attract natural enemies of the
defence	phytophagous. Example
	Synomones (induced)

 insects sense plant's Volatile Organic Compounds by odorant binding proteins to select appropriate hosts

 sucking insects cause minimal damage, while chewing insects cause wounding.
 They secrete proteins to suppress plant's defense response

3. many enzimes and transporters are involved. Plant derived toxic compound can be degraded by insect enzymes

Functional classification of pests

NOL	their recurring activity does not
considered pests	cause economic damage
Occasional pests	occasionally cause damage due to abiotic factors
Key pests	relevant economic damage

Functional classification of pests (cont)

Induced pest	They can become dangerous usually after changes in the environment dued to human activities, example: alloch- thonous insects, monoculture, broad range pesticides	
Economic damage can be: 1. proportional to physiological damage 2. less than proportional to the physiological damage 3. starts at a certain point of the physio- logical damage		
Cumplana	at of motobalian	
Suppleme	ent of metabolism	
\rightarrow sterols	ins (Blood is deficient) al amino acids (N recycling	
Common traits in p-symbionts: - genome reduction (~ 5.5 Mb) - High AT content Functional complementarity with host and co-symbiont genomes - Evolutionary stasis		
Integrated	Deet Management	
	Pest Management	
Definition	ecosystem approach to crop production and protection that adopts a combination of strategies	
Key points	identification of key pest	
	monitoring strategy	
	define thresholds	
	implement control strategies	
	evaluate results	
Economic	injury level = cost of control /	

(market value x loss)

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

By Nymphaeacat

(Nymphaeacat)

Published 24th September, 2021. Last updated 30th September, 2021. Page 2 of 7.

Entomology Cheat Sheet by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

IPM control catego	pries
Agronomical practices	Crop rotarion
	Cultivar choice
	soil management practices
	fertilization
Physical and mechanical approaches	Heat to treat food and seeds
	Microwave to trear wood
	Mechanically remove insects: light, traps
Agrochemicals	pheromone based suppression: mass traps
	pheromone based attract and kill
	mating disruption with sexual pheromones
	Auto confusion, auto sterilization
Biological control	introduction of natural predators or parasitoids
	pathogens: bacillus thuringiensis, fungi, nematodes
Inoculative biological control: natural	

enemies are released in the environment Inondative biological control: natural enemies are released repeately Conservation biological control: habitat management to let natural enemies live

Evolutionary background

Nothing in biology makes sense except in the light of evolution (Theodosius Dobzhansky, 1973) +

...Nothing in evolution makes sense without a good (true) phylogeny

Nothing in biology makes sense without a phylogeny

Cuticle synthesis

Insecta and Crustacea have an exoskeleton

Tyr and Phe are precursor of an essential component of cuticle systhesis

An **Endosymbiont** provides Tyr and Phe to the host

The host **regulates** the load of Endosymbiont to achieve cuticle, then eliminates it through apoptosis and autophagy

Zoology - Insecta

4 pairs of cephalic appendages (1 pre + 3 post oral) Exposed mouthparts Size: 0.2 - 300 mm **30 orders:** Archaeognata + Zygentoma (Apterigota) and Pterygota

nsect order

Apterygota	Archaeognata, Zygentoma
Pterygota	Ephemeroptera, Odonata,
	Plecoptera, Isoptera,
	Blattodea, Mantodea, Gryllo-
	blattodea, Mantophas-
	matodea, Phasmatodea,
	Embiidina, Orthoptera,
	Dermaptera, Zoraptera,
	Psocoptera, Phthiraptera,
	Thysanoptera, Hemiptera

Published 24th September, 2021. Last updated 30th September, 2021. Page 3 of 7.

DNA Taxonom

Definition	Process of naming and classi- fying organisms into groups, according to their similarities and differences
DNA barcoding	a standardized approach to identify organisms by the use of a DNA barcode
DNA barcode	Short DNA sequence taken from stardadized portions of the genome, coding or not a protein
Origin	1977: the idea; 1996: the first DNA metabarcoding; 2003: use of the term DNA barcoding; present: DNA barcoding, metabarcoding, eDNA

Cryptic species

Morphologically indistinguishable species that can be recognized only by molecular data

Molecular taxonomy

It merges BSC, MSC and Phylogenetic species concept PSC **PSC** considers monophyletic groups as the unique real entities of the speciation process

Types of taxon		
Monoph	A group of organisms including	
yletic	the <i>most recent common</i>	
taxon	<i>ancestor and its descendants</i>	
Polyph-	A group of organisms in which	
yletic	the most recent common	
taxon	ancestor <i>is not included</i>	

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

By Nymphaeacat

(Nymphaeacat)

Entomology Cheat Sheet by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Types of taxon (cont)

Paraph	A group of organisms including
yletic	the most recent common ancesto
taxon	but not its descendants

DNA barcoding workflow

1. Sample collection

- 2. DNA extraction
- 3. PCRs
- 4. Sanger sequencing
- 5. Electropherograms
- 6. Comparison with database (BOLD,
- BLAST)

7.Identification!

DNA metabarcoding workflow

- 1. Sample collection
- 2. Sample processing
- 3. DNA extraction
- 4. Libraries preparation
- 5. Sequencing
- 6. Bioinformatic analyses
- 7. Results

Note!

A reference database is mandatory in DNA analysis!

Homology, Orthology, Paralogy

Homology	2 genes that share a common ancestor (evolutionary hypoth- esis)
Orthology	homologous that have diverged after a speciation event
Paralogy	homologous that have diverged after a duplication event
Xenology	homologous that derived through lateral transfer

By **Nymphaeacat** (Nymphaeacat)

Insects environments

- 1. Caves
- 2. Forests
- 3. Meadows
- 4. Deserts
- 5. Urban environments
- 6. Lakes and rivers
- 7. Agroecosystem

Agroecosystem → many species interact. They're natural ecosystem modified for the production of food and fiber Planned diversity: plants and animals farmed + benefical organisms added Unplanned diversity: weeds, pests, other organisms

Interactions: demoecology

Demoec- ology	studies the demography of a population (density, structure, dynamics) and predicts future population in a given scenario
Metapo- pulation	when the individuals live in a fragmented habitat
Structural properties	density, distribution, size, age classes, sex ratio, genetic variability
Functional properties	behaviour, birth rate, mortality, genetic variability

r vs k strategy

- r:
- 1.exponential growth
- 2. short life cycle
- 3. small size
- 4. collapse dued to abiotic factors

Published 24th September, 2021. Last updated 30th September, 2021. Page 4 of 7.

r vs k strategy (cont)

- 5. related to ephemeral environments, can cause serious damage
- 6. large offspring, null parental care
- k:
- 1. logistic growth
- 2. long life cycle
- 3. medium-large size
- 4. rarely collapse because of abiotic factors
- 5. related to stable environments
- 6. reduced offspring, parental care

Multitrophic interactions

Green leaf	esters, aldehydes,
volatiles	alcohols C6
terpenoids C10, 0	C15, indoles

These are volatiles induced by the insect injuries.

They:

- 1. have a repellent action
- 2. induce plant-defence genes
- 3. attract other phytophagous (kairomones)

4. attract parasitoids and predators (synomones)

Insects defense towards GLS

1. Detox of isothiocyanates by conjugationo with Glutathione

2. Hydrolysis of GLS to obtain less toxic compounds (nitriles)

3. GLS sequestration to use against predators

Symbiosis	
Blockmann	observed Bacteriocytes in the
	body fat cells of cockroaches
Sulc	described aggregations of
	bacteriocytes in the body
	cavity of cicads

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

Entomology Cheat Sheet by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Primary	Obliged association, associated with their insect for long time, host-symbiont cocladogenesis, vertically transmitted (ie roaches and blattabacterium)
Secondary	Facultative symbiont, roles from mutualism to manipu- lation of reproduction, recently associated with their host
FUNCTIONS: → supplement of metabolic functions	

→ manipulation of host reproduction

protection against pathogens or toxins

Manipulation of host reproduction

The	help hosts that trasmit it OR
heredi-	sterilize hosts that don't trasmit
tary,	it (kill male embryos, induce
vertically	cytoplasmatic incompatibility,
transm-	feminize males, induce parthe-
itted	nogenesis)
symbiont	
does:	
Wolbachia	kills male embryos, feminizes
	male, induces parthenog-
	enesis, induces cytoplasmatic
	incompatibility (CI)
CI:	
infected sperm + infected egg = \checkmark \Box	
<i>infected sperm</i> + healthy egg = $X\square$	
healthy sperm + <i>infected egg</i> = $\checkmark \Box$	
healthy sperm + healthy egg = $\checkmark \Box$	

Insects species in Italy

Alloch tonous	Aedes albopictus, Trichopoda pennipes, Scaphoideus titanus , Leptoglossus occidentalis, Metcalfa pruinosa, Icerva
	purchasi, Halyomorpha halys , Vespa velutina,
Others	Drosophila suzuki, Diabrotica virgifera, Empoasca vitis, Lobesia botrana, Cysia ambiguella, Argyrotenia pulchellana
Key poin	ts in evolution

1	Cambrian explosion
2	Origin of Insecta
3	Vascular plants
4	Seed plants
5	End-permiam mass extinction
6	Flowering plants
7	Angiosperm
Remember the Cambrian explosion thanks	
to Opabinia, the weirdest animal ever	

Zoology - Arthropoda

<i>arthron</i> = articulated ; <i>podos</i> = foot
1.200.000 described species
Exoskeleton
Bilateria, protostomes and triploblastic
Metameric segmentation; tagma
High adaptability
Ectotherms

General Morphology

Heteronomous metamery: 20 metamers

Each metamer: ventral sternite, dorsal tergite, pleura (lateral sclerite), one pair of spiracle, one pair of ganglia, a couple of appendixes

3 morphological regions (tagma) → Head (6 metamers fused), Thorax (3 regions: promeso- meta-), Abdomen (11 metamers or urites + telson)

Pterygota

Endopterygota
Neuroptera
Megaloptera
Raphidioptera
→Coleoptera
Strepsiptera
→Diptera
Mecoptera
Siphonaptera
Trichoptera
→Lepidoptera
→Hymenoptera

It's a standardized approach to identification Solves limitations of morphological

approaches

Identifies organisms also from fragments or juvenile stages

Solves the "taxonomic impediment"

Morphological approach

Easy on the	but what about fragments
most cases	or juvenile stages?

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

By Nymphaeacat (Nymphaeacat)

Published 24th September, 2021. Last updated 30th September, 2021. Page 5 of 7.

Entomology Cheat Sheet by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Morphological approach (cont)	
Species:	groups of interbreeding natural populations that are reproduct- ively isolated from other such groups
The morpho- logical species concept:	Operational tool of the biological species concept → the existence of reproductive isolation is deduced by the analysis of morphological traits
Cons:	Subjective (<i>the specialist decides</i>); Intraspecific varability; Cryptic species

Application os DNA taxonomy

Outside entomology Food safety Inside entomology

Application of DNA taxonomy

Outside	Food safety, veterinary
entomology	application
Inside	Forensic science, biomonito-
entomology	ring, biodiversity surveys,
	investigate multitrophic relati-
	onships

DNA barcoding vs DNA Metabarcoding

DNA	sequences 1 DNA to identify 1
barcoding	organism
DNA	sequences 10 ⁵ -10 ⁷ DNA to
metaba-	identify organisms, simbionts,
rcoding	parasites, dead remnants and
	extracellular DNA

Sequence

Definition: S, is an order of *n* characters (Si) DNA is composed of 4 nucleotides (A, C, G, T) RNA is composed of 4 nucleotides (A, C, G, U)

Proteins are composed of 20 aminoacids

Ecosystem

It's a structural and functional unit consisting of a biological community of living organisms interacting with themselves and their physical environment, in a unit of space Ecological factor: every environmental

element interacting directly on living organisms

Biotic factors: influence organisms' fitness and distribution

Sampling

Direct	qualitative, useful for presence/-
	absence analyses, depends by
	the human experience
Indirect	quantitative, useful for hypotesis testing, do not depend by human

Interactions: autoecology

Autoec	Study of the individuals: range of
ology	tolerances, thermoregulation,
	water balance

Autoecology studies guilds:

- -Herbivores
- Predators
- Scavengers
- Parasites and parasitoids

Trophic guilds

Scavengers	Feed on dead or dying
	plants, dead or dying
	animals, excrements of other
	animals

By **Nymphaeacat** (Nymphaeacat) Published 24th September, 2021. Last updated 30th September, 2021. Page 6 of 7.

Trophic guilds (cont)

Phytop-	phyllophagous (leaves),
hagous	carpophagous (fruit), plant
	sucking (xylem, phloem),
	anthophagous (flowers),
	rhizophagous (roots),
	xylophagous (wood)
Zoophagous	feed on other animals
	(predators and parasitoids)

Interactions: Sinecology

It studies the interactions among species in a definited space

Competition, Predation, Symbiosis

Competition is higher in a limited environment (ie leafminers). It can be symmetric or asymmetric (if one species is more competitive than the other)

Predation: prays evolve features to defense, predators to overcome the preys strategies

Symbiosis: parasitism, mutualism, commensalism

Detox of plant's defense compounds

1. reduction of toxicity by **ctyochrome P450 monooxygenases (CYPs)**. Heme-containing enzimes catalyzing

 hydrophobic compounds are converted in hydrophilic by Glutathione S-transferases (GSTs) and Uridine 5'-diphospho-glucuronosyltransferases (UGTs) catalysing the conjugation of GSH from uridine 5diP glucoronic acid to the xenobiotic substance
 ATP binding cassette (ABC) transports xenobiotics outside the cell

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

Entomology Cheat Sheet

Cheatography

by Nymphaeacat (Nymphaeacat) via cheatography.com/137801/cs/29074/

Damages caused by insects		
Direct	Insect directly attacks the commercial parts	
Indirect	Insect attacks non-commercial parts but reduces plant efficiency	
Physio- logical damage	Phyllophagous insects reduce leaves surface , reducing photosynthesys, of aphids can induce presence of black sooty mold or viruses , rhizop- hagous and xylophagous insects	
Productive damage	measurable plant loss (quali- tative and quantitative), or aesthetic damage	
Economic damage	monetary value of the productive damage	

Causes promoting pest damage

Abiotic factors

Biotic factors (plant genotype, insect preference, phenological phase)

Random factors

Relationships

/	Parasitic	Mutualistic
Facult-	male killing,	increase
ative	feminisation	fecundity
Obligate	oogenesis	nutrient
		provisioining

Vertically transmitted symbionts:

- reproductive parasitism
- mutualistic symbiosis
- standard parasitism

By Nymphaeacat (Nymphaeacat)

Published 24th September, 2021. Last updated 30th September, 2021. Page 7 of 7.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nymphaeacat/

Open questions about symbiosis
Understand molecular basis of insect-sy- mbiont interactions
Microbiota and microbioma associate to non-model insects
Impact of commensal bacteria in niche colonization
Impact of ecological determinants on the microbiota structure