
CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

 Collec ​tions

Defi ​nit ​ion: A data structure that stores a
collection of objects (elements)

The elements within a collection are usually
orga ​nized based on:
-Order in which they were added
-Some inhe ​rent relati ​onship

They can be linear or nonlinear

Needs a well defined inte ​rface to use
properly

For each collection we examine, we will
cons ​ider:
- How does the collection oper ​ate concep ​‐
tually?
- How do we formally define its interf ​ace?
- What kinds of problems does it help us
solve?
- What ways might we impl ​ement it?
- What are the benefits and costs of each
implem ​ent ​ation?

Oper ​ati ​ons that define how we inte ​ract
with it:
They usually include ways for the user to:
-add and remove elements, determine if
the collection is emp ​ty, determine the
collec ​tion’s size
They also may include:
-iterators, to process each element in the
collec ​tion, operations that int ​eract with
other collec ​tions

SET -> random selectoin, no orrder, no
duplicates

STACK -> first in last out, adds to top, takes
off top

QUEUE -> first in first out, adds to back,
takes off frount

 Collec ​tions (cont)

Rank and Posi ​tion are 2 diffe ​rent ways to
define the location of a particular element
within the container

-For example, a list of people may be kept
in alph ​abe ​tical order by name or in the
order in which they were added to the list
-Which type of collection you use depends
on what you are trying to acco ​mpl ​ish

Dynamic Memory and “new”

The operator new dynami ​cally allocates
memory from the heap (free memory) and
returns a pointer

Candidate *c; //creates a

pointer variable for Candidate

structures

c = new Candidate; //actually

allocates the memory for a

Candidate data type

The new object will exist until it is explicitly
de-all ​ocated (no garbage collection!)
delete Foo;

Arrays can also be dynami ​cally allocated in
the same way, but must be de-all ​ocated
using the delete[]

If it has a new it needs a delete
It is essential to eventually de-all ​ocate
memory using delete that was allocated
with new to avoid memory leaks, once the
pointer is gone you cant access it

Analysis Tools

Write program and run it
clock it and plot it
Time X Input Size

We use the Worst Case not the Average
Case
lo Easier to analyze Crucial to applic ​‐
ations such as games, finance and robotics

Time is in unets were 1 is the time it would
take for that RAM to acsess on pease of
memory

By inspecting the pseudo ​code, we can
determine the maximum number of primitive
operations executed by an algorithm, as a
function of the input size:

1.) count up primative opps, a loop from
i<-1 to n-1 is 2n
2.) count each line up(adding them)8n-3
3.) then take the fastest growing part 8n

--Growth Rate--

T(n) is afected by the hardwaer but the
growth rate dose not chang, growth rate is
inhearet to the funtoin

Growth rate is not afected by consatnts or
lower odder terms

It's not usually nece ​ssary to know the
exact growth function. The key issue is the
asym ​ptotic comple ​xity (how it grows as n
increa ​ses). This is determined by the
dominant term in the growth function
This is referred to as the order of the
algorithm. We often use Big-Oh notation to
specify the order

--As ​ymp ​totic Algorithm Analys ​is--

The asymptotic analysis of an algorithm
determines the running time in big-Oh
notation

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 1 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Analysis Tools (cont)

The asymptotic analysis:
1.) We find the worst-case number of
primitive operations executed as a function
n(input size)
2.) We express this function with big-Oh
notation

--Bi ​g-O ​h--

If is f(n) is of degree d, then f(n) is O(n)
-Use the smallest possible class of functions
-Use the simplest expression of the class

~Loops~
-A loop executes a certain number of
times: n
-It contains the inner complexity of: m
Then the loop’s comp ​lex ​ity is n*m
 If m is a cons ​tant -> O(n)
 If m is a function of n(like another
loop(n, n-1 or n/2)) -> O(n*m ​)(​sim ​pli ​fied)

~Recursive~
-The size of the problem is: n
-Except for the base case, each recu ​rsive
call results in calling itself m more: m-1
So the comp ​lex ​ity is m -1 or O(m)

-We pretend the memory is unlimited
-(Big ​-Oh ​)Since constant factors and lower- ​‐
order terms are eventually dropped we can
skip counting primitive operat ​ions

Double Linked List Insertoin Algorithom

Terms

data type the progra ​mming constructs
used to implement a collection

abstract
data type

a data type whose values and
operations are not inherently
defined in a progra ​mming
language

data
structure

a group of values and the
operations defined on those
values

Algorithm a step-b ​y-step procedure for
preforming some task in a finite
amount of time

Abstra ​ction

An abstra ​ction hides certain details at
certain times

It provides a way to deal with the
complexity of a large system

A collec ​tion, like any well-d ​efined object, is
an abstra ​ction

We want to separate the interface of the
collection (how we interact with it) from the
underlying details of how we choose to
implement it

Data Types

Enumer ​
ations

User defined types for discrete
values (behave much like
integers) Default, numbered 0, 1,
etc, but can specify values
enum Day { WINTER, SPRING,
SUMMER, FALL } ;
enum Day { FALL = 3, WINTER =
2, SUMMER = 1, SPRING = 4 } ;

Abstract Data Types (ADTs)

Is an abstra ​ction of a data struct ​ure

An ADT spec ​ifi ​es:
-Data stored
- Oper ​ati ​ons on the data
- Error condit ​ions associated with
operations

No specif ​ication of how, just a list of operat ​‐
ions. We should hide the implem ​ent ​ation .
. . The user of the ADT does not need to
know the deta ​ils, just how to use it. Imple ​‐
men ​tations may change due to hardware or
system upgrad ​esuser doesn’t need to see
that

The cont ​ainer (the data struct ​ure), and how
that container is mani ​pul ​ated, is in many
ways more import ​ant than the actual data.
Temp ​lates allow C++ programs to
manipulate many different types of data
using the same semant ​ics.

-Tem ​pla ​tes- allow C++ programs to
manipulate many different types of data
using the same semant ​ics.

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 2 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

​d

n n

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
https://www.cheatography.com/uploads/noxlupus_1571194611_DDL%20Intertion.jpg
http://www.cheatography.com/noxlupus/
https://readable.com

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Abstract Data Types (ADTs) (cont)

Exam ​ple: ADT modeling a simple stock
trading system:
 -The data stored are buy/sell orders
 -The oper ​ati ​ons supported are
 order buy ​(s ​tock,
 shares, price)
 order sell ​(​stock, shares, price)
 void canc ​el​(o ​rder)
 -Error condit ​ions:
 Buy/sell a none ​xis ​tent stock
 Cancel a none ​xis ​tent order

templa ​te< ​typ ​ename E>

POINTERS

* - derefe ​rencing (accesses the objects
value from its addr ​ess)

& - address of (returns the address of an
object in memory)

Example: if int x, then &x will return the
address of the x variable
Example: if int* q, then q = &x and you can
use *q = 5 effect ​ively changes the value of
x.

int a = {12,15 ​,18}; //init ​‐
ializes the array a with size 3,

index positions 0-2, and

//values 12, 15 and 18

Int* p = a; //p points to a[0]

Int* q = &c[0]; //q also points

to a[0]

pointer and arrays

int *r[17]; creates an array of 17 int pointer
elements
Once the array has been initia ​lized, you can
derefe ​rence any particular pointer
*r[6] will derefe ​rence the 7th pointer in the
array*

Rank

Is defi ​ned as the loca ​tion of an element
within its container

first rank is 1 not 0

The index is typically one less than the rank.

The index value typically indicates how
many elements precede that particular
element
the Rank shows what spont it is in

Used in Vect ​ors ​​(it's really like indext it just
shows what it is at not how manny more
there are)

Position

The concept of Position models the notion
of place within a data struct ​ure where a
single object is stored
Does not rely on the idea of rank

The Position ADT has one meth ​od:
Object p.el ​eme ​nt(): returns the element at
posi ​tion p
In C++ it is convenient to implement this as
*p

Like nabors consers what is around not
were it is

Useed in Nodes (shows what it is colsed
to, but not nesarly were it is)

OVERALL VIEW

Stack ADT

The Stack ADT stores arbitrary objects

Insertions and deletions follow the last-in
first- ​out scheme
Think of a spri ​ng- ​loaded dispen ​ser

--Main stack operat ​ion ​s-- :
 push ​(​obj ​ect): inserts an element
 object pop(): removes the last inserted
element

--Au ​xiliary stack-- operat ​ions:
 object top(): returns the last inserted
element without removing it
 integer size ​(): returns the number of
elements stored
 boolean empt ​y(): indicates whether no
elements are stored

pop -> -
push -> +

C++ interface corres ​ponding to our Stack
ADT Uses an exception class StackEmpty
Different from the built-in C++ STL class
stack

-Direct applic ​ations:

 Page-v ​isited hist ​ory in a Web browser

 Undo sequence in a text editor

 Chain of method calls in the C++ run-
time system

-Indirect applic ​ations:

 *Auxiliary data structure for algorithms

 Component of other data struct ​ures*

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 3 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
https://www.cheatography.com/uploads/noxlupus_1571324690_Inkodo-10172019_110328_AM.png
http://www.cheatography.com/noxlupus/
https://readable.com

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Queue ADT

Stores arbitrary objects

Insertions and deletions follow the first-in
first-out scheme
Insertions are at the rear of the queue and
removals are at the front of the queue

-Main queue operat ​ions-
 enqu ​eue ​(​obj ​ect): inserts an element at
the end of the queue
 Dequ ​eue ​(): removes the element at the
front of the queue

-Auxiliary queue- operat ​ions:
 object fron ​t(): returns the element at the
front without removing it
 integer size ​(): returns the number of
elements stored
 boolean empt ​y(): indicates whether no
elements are stored

-Excep ​tions-
 Attempting the execution of dequeue or
front on an empty queue throws an
QueueEmpty

enqueue -> +
dequeue -> -
head -> retuns top(dose not chang
anything)

C++ interface corres ​ponding to our Queue
ADT Requires the def-in ​ition of exception
QueueEmpty No corres ​ponding built-in C++
class

-Direct applic ​ations
 Waiting lists, bureau ​cracy
 Access to shared resour ​ces (e.g.,
printer)
 Multip ​rog ​ramming
-Indirect applic ​ations
 Auxiliary data structure for algorithms
 Component of other data structures

Deque ADT

stores arbitrary objects

Insertions and deletions can be done to the
front OR the back of the deque

-Main queue operat ​ions-
 inse ​rtF ​ron ​t ​(ob ​ject): inserts an element
at the front of the deque
 inse ​rtB ​ack ​(​obj ​ect): inserts an element
at the back of the deque
 eras ​eFr ​ont ​(): removes the first element
of the deque
 eras ​eBa ​ck(): removes the last element of
the deque

-Auxiliary deque operat ​ions-
 object fron ​t(): returns the element at the
front without removing it
 object back ​(): returns the element at the
back without removing it
 integer size ​(): returns the number of
elements stored
 boolean empt ​y(): indicates whether no
elements are stored

-Excep ​tions-
 Attempting the execution of eraseF ​ront,
eraseBack, front or back on an empty
deque throws an DequeE ​mpt ​yEx ​ception

inse ​​rt ​F ​r ​on ​t ​ -> +
inse ​rtB ​ack -> +
eras ​eFr ​ont -> -
eras ​e ​Ba ​ck -> -
front ​ ​ ​ ​ ​ ​ -> retuns the frount elemen ​‐
t(dose not chang anything)
back ​ ​ ​ ​ ​ ​ -> retuns the back elemen ​t(dose
not chang anything)

can be used as a stack and as a queue

Array List(V ​ector)

The Vector or Array List ADT extends the
notion of array by storing a sequence of
objects

--Main method ​s--
At(integer i): returns the element at index i
without removing it
Set(integer i, object o): repl ​ace the element
at index i with o
Insert(integer i, object o): insert a new
element o to have index i
Erase(integer i): remo ​ves element at index
i

--Ad ​dit ​ional method ​s--
Size()
Empty()

An element can be acce ​ssed, inserted or
removed by specifying its index (number
of elements preceding it)

An exce ​ption is thrown if an incorrect index
is given (e.g., a negative index)

A major weakness in array implem ​ent ​‐
ations of collec ​tions is the fixed capacity N
for the number of elements that may be
stored in the array.
Thus we double the array size when the
array is full

Iterators

extends the concept of position by adding a
traversal capability

An iterator behaves like a pointer to an
element
*p -> returns the element referenced by
this iterator
++p -> advances to the next element
--p -> regres ​ses to the previous element

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 4 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Node List

The Node List ADT models a sequence of positi ​ons storing
arbitrary objects

--Ge ​neric method ​s--
size(),
empty()

--It ​era ​tor ​s--
begin(), end()

--Update method ​s--
insert ​Fro ​nt(e),
insert ​Back(e)
remove ​Fro ​nt(),
remove ​Back()

--It ​era ​tor ​-based update--
insert(p, e)
remove(p)

It establ ​ishes a befo ​re/ ​after relation between posit ​ions

Sequences

The Sequence ADT is the union of the Array List and Node List
ADTs

--Ge ​neric methods-
size(),
empty()

--Ar ​ray ​Lis ​t-based method ​s--
at(i),
set(i, o),
insert(i, o), erase(i)

--Li ​st- ​based method ​s--
begin(),
end()
insert ​Fro ​nt(o),
insert ​Back(o)
eraseF ​ront(),
eraseB ​ack()
insert (p, o),
erase(p)

--Bridge methods-
atInde ​x(i),
indexOf(p)

The Sequence ADT is a basic, gene ​ral ​-pu ​rpose, data struct ​‐
ure for storing an orde ​red collection of elements

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 5 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

	CSC 202 Test1 C++ Cheat Sheet - Page 1
	 Collec­tions
	Analysis Tools
	Dynamic Memory and “new”

	CSC 202 Test1 C++ Cheat Sheet - Page 2
	Terms
	Data Types
	Abstract Data Types (ADTs)
	Abstra­ction
	Double Linked List Insertoin Algorithom

	CSC 202 Test1 C++ Cheat Sheet - Page 3
	Rank
	Stack ADT
	Position
	POINTERS
	OVERALL VIEW

	CSC 202 Test1 C++ Cheat Sheet - Page 4
	Queue ADT
	Deque ADT
	Array List(V­ector)
	Iterators

	CSC 202 Test1 C++ Cheat Sheet - Page 5
	Node List
	Sequences

