Cheatography

@ Collections

Definition: A data structure that stores a
collection of objects (elements)

The elements within a collection are usually
organized based on:

-Order in which they were added

-Some inherent relationship

They can be linear or nonlinear

Needs a well defined interface to use
properly

For each collection we examine, we will
consider:

- How does the collection operate concep-
tually?

- How do we formally define its interface?
- What kinds of problems does it help us
solve?

- What ways might we implement it?

- What are the benefits and costs of each

implementation?

Operations that define how we interact
with it:

They usually include ways for the user to:
-add and remove elements, determine if
the collection is empty, determine the
collection’s size

They also may include:

-iterators, to process each element in the
collection, operations that interact with
other collections

SET -> random selectoin, no orrder, no
duplicates

STACK -> first in last out, adds to top, takes
off top

QUEUE -> first in first out, adds to back,
takes off frount

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

@ Collections (cont)

Rank and Position are 2 different ways to
define the location of a particular element
within the container

-For example, a list of people may be kept
in alphabetical order by name or in the
order in which they were added to the list
-Which type of collection you use depends
on what you are trying to accomplish

Dynamic Memory and “new”

The operator new dynamically allocates
memory from the heap (free memory) and
returns a pointer

Candidate *c; //creates a
pointer variable for Candidate
structures

¢ = new Candidate; //actually
allocates the memory for a

Candidate data type

The new object will exist until it is explicitly
de-allocated (no garbage collection!)

delete Foo;

Arrays can also be dynamically allocated in
the same way, but must be de-allocated
using the delete[]

If it has a new it needs a delete

It is essential to eventually de-allocate
memory using delete that was allocated
with new to avoid memory leaks, once the
pointer is gone you cant access it

Not published yet.
Last updated 18th October, 2019.
Page 1 of 5.

Analysis Tools

Write program and run it
clock it and plot it
Time X Input Size

We use the Worst Case not the Average
Case

lo Easier to analyze Crucial to applic-
ations such as games, finance and robotics

Time is in unets were 1 is the time it would
take for that RAM to acsess on pease of
memory

By inspecting the pseudocode, we can
determine the maximum number of primitive
operations executed by an algorithm, as a
function of the input size:

1.) count up primative opps, a loop from
i<-1 to n-1is2n
2.) count each line up(adding them)8n -3

3.) then take the fastest growing part 8n
--Growth Rate--

T(n) is afected by the hardwaer but the
growth rate dose not chang, growth rate is
inhearet to the funtoin

Growth rate is not afected by consatnts or

lower odder terms

It's not usually necessary to know the
exact growth function. The key issue is the
asymptotic complexity (how it grows as n
increases). This is determined by the
dominant term in the growth function

This is referred to as the order of the
algorithm. We often use Big-Oh notation to
specify the order

--Asymptotic Algorithm Analysis--

The asymptotic analysis of an algorithm
determines the running time in big-Oh
notation

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

Cheatography

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

The asymptotic analysis:

1.) We find the worst-case number of
primitive operations executed as a function
n(input size)

2.) We express this function with big-Oh
notation

--Big-Oh--

If is f(n) is of degree d, then f(n) isO(n)
-Use the smallest possible class of functions
-Use the simplest expression of the class

~Loops~

-A loop executes a certain number of
times: n

-It contains the inner complexity of: m
Then the loop’s complexity is n*m

If m is a constant -> O(n)

If m is a function of n(like another
loop(n, n-1 or n/2)) -> O(n*m) (simplified)
~Recursive~
-The size of the problem is: n
-Except for the base case, each recursive
call results in calling itself m more: m-1
So the complexity is m"-1 or O(m")

-We pretend the memory is unlimited
-(Big-Oh)Since constant factors and lower--
order terms are eventually dropped we can
skip counting primitive operations

Double Linked List Insertoin Algorithom

|

Algorithm insert(p, e): {insert e before p}
Create a new node v
v—element = e
u = p—>prev
v—next = p; p—prev=v {linkin v before p}

v—prev = u; u—next=v {linkin v after u}

Tost] Pote code Jioble Lianed

LSt Thiertion

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

data type the programming constructs
used to implement a collection

abstract a data type whose values and

data type operations are not inherently
defined in a programming
language

data a group of values and the

structure operations defined on those
values

Algorithm a step-by-step procedure for

preforming some task in a finite

amount of time

Enumer User defined types for discrete

ations values (behave much like
integers) Default, numbered 0, 1,
etc, but can specify values

enum Day { WINTER, SPRING,
SUMMER, FALL } ;

enum Day { FALL = 3, WINTER =

2, SUMMER = 1, SPRING =4} ;

Abstraction

An abstraction hides certain details at
certain times

It provides a way to deal with the
complexity of a large system

A collection, like any well-defined object, is
an abstraction

We want to separate the interface of the
collection (how we interact with it) from the
underlying details of how we choose to
implement it

Not published yet.
Last updated 18th October, 2019.
Page 2 of 5.

Abstract Data Types (ADTs)

Is an abstraction of a data structure

An ADT specifies:

-Data stored

- Operations on the data

- Error conditions associated with
operations

No specification of how, just a list of operat-
ions. We should hide the implementation .
.. The user of the ADT does not need to
know the details, just how to use it. Imple-
mentations may change due to hardware or
system upgradesuser doesn'’t need to see
that

The container (the data structure), and how
that container is manipulated, is in many
ways more important than the actual data.
Templates allow C++ programs to
manipulate many different types of data
using the same semantics.

-Templates- allow C++ programs to
manipulate many different types of data
using the same semantics.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
https://www.cheatography.com/uploads/noxlupus_1571194611_DDL%20Intertion.jpg
http://www.cheatography.com/noxlupus/
https://readable.com

Cheatography

Abstract Data Types (ADTs) (cont)

Example: ADT modeling a simple stock

trading system:
-The data stored are buy/sell orders
-The operations supported are
order buy(stock,
shares, price)
order sell(stock, shares, price)
void cancel(order)
-Error conditions:
Buy/sell a nonexistent stock
Cancel a nonexistent order

template<typename E>

POINTERS

* - dereferencing (accesses the objects
value from its address)

& - address of (returns the address of an
object in memory)

Example: if int x, then &x will return the
address of the x variable

Example: if int* g, then q = &x and you can
use *q = 5 effectively changes the value of
X.

int a = {12,15,18}; //init-
ializes the array a with size 3,
index positions 0-2, and

//values 12, 15 and 18

Int* p = a; //p points to al0]
Int* g = &c[0]; //g also points
to al0]

pointer and arrays

int *r[17]; creates an array of 17 int pointer
elements

Once the array has been initialized, you can
dereference any particular pointer

*r[6] will dereference the 7th pointer in the
array”

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Is defined as the location of an element
within its container

firstrank is 1 not 0
The index is typically one less than the rank.

The index value typically indicates how
many elements precede that particular
element

the Rank shows what spont it is in

Used in Vectors(it's really like indext it just
shows what it is at not how manny more
there are)

The concept of Position models the notion

of place within a data structure where a
single object is stored
Does not rely on the idea of rank

The Position ADT has one method:

Object p.element(): returns the element at
position p

In C++ it is convenient to implement this as
P

Like nabors consers what is around not

were it is

Useed in Nodes (shows what it is colsed
to, but not nesarly were it is)

OVERALL VIEW

STL Container
vector Vector

deque Double ended queue

list List

stack Last-in, first-out stack
queue First-in, first-out queue
priority_queue Priority queue

set (and multiset) Set (and multiset)

map (and multimap) | Map (and multi-key map)

Description

Not published yet.
Last updated 18th October, 2019.
Page 3 of 5.

Stack ADT

The Stack ADT stores arbitrary objects

Insertions and deletions follow the last-in
first-out scheme
Think of a spring-loaded dispenser

--Main stack operations--:
push(object): inserts an element
object pop(): removes the last inserted

element

--Auxiliary stack-- operations:

object top(): returns the last inserted
element without removing it

integer size(): returns the number of
elements stored

boolean empty(): indicates whether no
elements are stored
pop -> -
push -> +
C++ interface corresponding to our Stack
ADT Uses an exception class StackEmpty
Different from the built-in C++ STL class
stack

-Direct applications:

Page-visited history in a Web browser

Undo sequence in a text editor

Chain of method calls in the C++ run-
time system

-Indirect applications:

*Auxiliary data structure for algorithms

Component of other data structures™

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
https://www.cheatography.com/uploads/noxlupus_1571324690_Inkodo-10172019_110328_AM.png
http://www.cheatography.com/noxlupus/
https://readable.com

Cheatography

Queue ADT

Stores arbitrary objects

Insertions and deletions follow the first-in
first-out scheme

Insertions are at the rear of the queue and
removals are at the front of the queue

-Main queue operations-
enqueue(object): inserts an element at
the end of the queue
Dequeue(): removes the element at the
front of the queue

-Auxiliary queue- operations:

object front(): returns the element at the
front without removing it

integer size(): returns the number of
elements stored

boolean empty(): indicates whether no
elements are stored

-Exceptions-

Attempting the execution of dequeue or
front on an empty queue throws an
QueueEmpty

enqueue -> +

dequeue -) -

head -> retuns top(dose not chang
anything)

C++ interface corresponding to our Queue
ADT Requires the def-inition of exception
QueueEmpty No corresponding built-in C++
class

-Direct applications
Waiting lists, bureaucracy
Access to shared resources (e.g.,
printer)
Multiprogramming
-Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

CSC 202 Test1 C++ Cheat Sheet
by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Deque ADT

stores arbitrary objects

Insertions and deletions can be done to the
front OR the back of the deque

-Main queue operations-

insertFront (object): inserts an element
at the front of the deque

insertBack(object): inserts an element
at the back of the deque

eraseFront(): removes the first element
of the deque

eraseBack(): removes the last element of
the deque

-Auxiliary deque operations-

object front(): returns the element at the
front without removing it

object back(): returns the element at the
back without removing it

integer size(): returns the number of
elements stored

boolean empty(): indicates whether no
elements are stored

-Exceptions-

Attempting the execution of eraseFront,
eraseBack, front or back on an empty
deque throws an DequeEmptyException

insertFront -> +

insertBack -> +

eraseFront -)> -

eraseBack -) -

front -> retuns the frount elemen-
t(dose not chang anything)

back -> retuns the back element(dose
not chang anything)

can be used as a stack and as a queue

By NoxLupus (NoxLupus)
cheatography.com/noxlupus/

Not published yet.
Last updated 18th October, 2019.
Page 4 of 5.

Array List(Vector)

The Vector or Array List ADT extends the
notion of array by storing a sequence of
objects

--Main methods--

At(integer i): returns the element at index i
without removing it

Set(integer i, object 0): replace the element
at index i with o

Insert(integer i, object 0): insert a new
element o to have index i

Erase(integer i): removes element at index
i

--Additional methods--

Size()

Empty ()

An element can be accessed, inserted or
removed by specifying its index (number
of elements preceding it)

An exception is thrown if an incorrect index
is given (e.g., a negative index)

A major weakness in array implement-
ations of collections is the fixed capacity N
for the number of elements that may be
stored in the array.

Thus we double the array size when the
array is full

extends the concept of position by adding a

traversal capability

An iterator behaves like a pointer to an
element

*p -> returns the element referenced by
this iterator

++p -> advances to the next element
--p -> regresses to the previous element

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

CSC 202 Test1 C++ Cheat Sheet

or
Chﬂat(}bl aphy by NoxLupus (NoxLupus) via cheatography.com/46432/cs/20762/

Node List

The Node List ADT models a sequence of positions storing

arbitrary objects

--Generic methods--
size(),

empty()

--Iterators--

begin(), end()
--Update methods--
insertFront(e),
insertBack(e)
removeFront(),
removeBack()

--lterator-based update--
insert(p, e)
remove(p)

It establishes a before/after relation between positions

Sequences

The Sequence ADT is the union of the Array List and Node List
ADTs

--Generic methods-
size(),

empty()
--ArrayList-based methods--
at(i),

set(i, 0),

insert(i, 0), erase(i)
--List-based methods--
begin(),

end()

insertFront(o),
insertBack(o)
eraseFront(),
eraseBack()

insert (p, 0),

erase(p)

--Bridge methods-

atIndex(i),
indexOf(p)

The Sequence ADT is a basic, general-purpose, data struct-
ure for storing an ordered collection of elements

By NoxLupus (NoxLupus) Not published yet. Sponsored by Readable.com
cheatography.com/noxlupus/ Last updated 18th October, 2019. Measure your website readability!
Page 5 of 5. https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/noxlupus/
http://www.cheatography.com/noxlupus/cheat-sheets/csc-202-test1-c
http://www.cheatography.com/noxlupus/
https://readable.com

	CSC 202 Test1 C++ Cheat Sheet - Page 1
	 Collec­tions
	Analysis Tools
	Dynamic Memory and “new”

	CSC 202 Test1 C++ Cheat Sheet - Page 2
	Terms
	Data Types
	Abstract Data Types (ADTs)
	Abstra­ction
	Double Linked List Insertoin Algorithom

	CSC 202 Test1 C++ Cheat Sheet - Page 3
	Rank
	Stack ADT
	Position
	POINTERS
	OVERALL VIEW

	CSC 202 Test1 C++ Cheat Sheet - Page 4
	Queue ADT
	Deque ADT
	Array List(V­ector)
	Iterators

	CSC 202 Test1 C++ Cheat Sheet - Page 5
	Node List
	Sequences

