Bases
$0 \times 0 F>00001111$
Convert by each byte for bitstr-
ings.
$1100+11=$
$1100+0011$
Pad from the left.
$0 \times 0 F+0 x 0 A$
$15+10=25$
REMEMBER TO CONVERT
BASES BACK UNLESS
STATED OTHERWISE

Logic	
p implies	q

p	implies	q
0	0	1
0	1	1
1	0	0
1	1	1

p	or	q
0	0	0
0	1	1
1	0	1
1	1	1

p	and	q
0	0	0
0	1	0
1	0	0
1	1	1

Sets
Sets have no duplicates, and
are unordered.
set('john, stop')
$=\left\{\right.$ 'l', 'o', 'h', 'n', ',' ", 's', 't', ' o', 'p $^{\text {commas and spaces count as }}$ characters
$A=\{j, o, h, n\}, B=\{s, t, o, p\}$
$A \cup B=\{j, o, h, n, s, t, o, p\}$
$A \cap B=\{0\}$
$A-B=\{j, h, n\}$
$S y m d i f f=A \cup B-A \cap B=$
$\{j, h, n, s, t, p\}$
$=X O R$

Graphs

For $(v, w) \in E \Rightarrow(w, v) \in E$ to be true...
It must be an undirected graph.
(v, w) is an edge in the set of all edges E
Trees are graphs but cannot have cycles.
Edge list: (NODE, COST, NODE)

Big O
Most Efficient
$\mathrm{O}(1)$
$\mathrm{O}(\operatorname{logn})$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{nlogn})$
$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
$\mathrm{O}(\mathrm{n}!)$
Least Efficient
logn is hopping halfway between

Functions

Domain = Source/Left
Range $=$ Result/Right
A relation can be thought of as a set that contains every pair which maps from an element in the domain to an element in the range.
For a function, every element in the range is mapped to from a unique element in the domain. This is to say, that an element on the left of this diagram can ONLY map to ONE element on the right.

Matrices

$1 \times 22 \times 1$
[5, 7] [3]
[4]
If the two inside numbers are the same, dot product can be performed, the resulting matrix is the rows x column

Relations

Domain/Range is the same
RELATIONS CAN MAP
MULTIPLE DOMAIN
ELEMENTS TO A RANGE ELEMENT
Transitive
Triangle line.
I'm taller than Pramod, who is taller than Alex, therefore, I'm taller than Alex.
$x>y, y>z=>x>z$
Reflexive
Diagonal line
I know myself
x=X
Symmetric
Diagonal with identical results mirrored.
They're sitting across from me, therefore I'm sitting across from them.
$x+y / 2=y \Rightarrow x=y$

By noxlock

cheatography.com/noxlock/

Published 25th October, 2019.
Last updated 25th October, 2019.
Page 1 of 1 .

Sponsored by Readable.com

Measure your website readability!
https://readable.com

