\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{NoelleEvelyn} \pdfinfo{ /Title (pchem-unit-3.pdf) /Creator (Cheatography) /Author (NoelleEvelyn) /Subject (PChem Unit 3 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{1DEBC9} \definecolor{LightBackground}{HTML}{F0FDFB} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{PChem Unit 3 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{NoelleEvelyn} via \textcolor{DarkBackground}{\uline{cheatography.com/168075/cs/45270/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}NoelleEvelyn \\ \uline{cheatography.com/noelleevelyn} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 15th December, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Intermolecular forces vs Intramolecular forces}} \tn % Row 0 \SetRowColor{LightBackground} Intermolecular Forces & Between macromolecules \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Intramolecular Forces & happen within \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{IMFs to explain membranes}} \tn % Row 0 \SetRowColor{LightBackground} Hydrophilic heads & in water (polar) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Hydrophobic tails & away from water (nonpolar) \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Electroneg. diff. vs bond polarity -\textgreater{} ions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The larger the electronegativity difference, the more polar the bond} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} When electroneg. greater than 2 & bonding e spend most time close to nometals, ionic bond instead of shared e covalent bond \tn % Row Count 7 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.08 cm} x{3.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Predicts behavior protein in solvents}} \tn % Row 0 \SetRowColor{LightBackground} Side with most compatible IMFs w/solvent & will be on outside if dissolves (polar) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Oils (hydrocarbons) & opposite water (nonpolar) \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.28 cm} x{4.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PP polymer to degree cross linking chains}} \tn % Row 0 \SetRowColor{LightBackground} Additives (alter properties) & Substances added to polymeric materials \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Cross-linking & 2 or more molecules together with covalent bond or connecting with ionic \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} Physical properties & highly increased by degree cross-linking \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} Low degree cross-linking & More flexible, more soluble \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} High degree cross-linking & more rigid, higher mp, bp \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Predict charges Polyatomic ions}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Polyatomic} ions & Ionic compounds \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} ions in lattice & Molecular ions (seceral atoms covalently bonded) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{OH- NO3- CO3,2-, SO42-, PO43-, NH4+} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Charges balance out} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Identify monomers to form Polymers}} \tn % Row 0 \SetRowColor{LightBackground} Monomers & building blocks of polymers \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Addition formation & link up amide formation combining carboxylic acide + amine = amine to N \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} Type of \seqsplit{polymerization} & impacts final structure \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Ionic compound nomenclature}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/noelleevelyn_1734302180_Ionic compound.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Common Functional groups}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/noelleevelyn_1734298926_commonfunctgroups1.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Unit cell}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Repeating units that build the crystal lattice} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.28 cm} x{4.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Strength + \#C influence mixing}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{A mixture will only mix if it meets atleast one of the two criteria} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. & Mixed version has more configurations \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 2. & Mixed version has lower Ep (thermodynamics) \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Exothermic reactions desired & Loose energy, don't require energy to occur \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Temperature can impact} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Bottom right on PEC diagram} \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Polarizability and Molecular Geometry impacts IMFs}} \tn % Row 0 \SetRowColor{LightBackground} Larger & More dispersion, because more space for IMFs interactions \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Distertion from polarizability (e cloud disterted by external electric field) & causes temporary dipoles that induce dispersion forces. \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} Polarizability increases & Dispersion increases \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{PP. Ionic compounds vs elctrostatic interactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Ionic compounds tend to be solids with high melting and boiling points, becasue ion-ion electrostatic forces are strong} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Size cat. +an. periodic trends, coulumbs law}} \tn % Row 0 \SetRowColor{LightBackground} Cations & Smaller because they loose elctrongs \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Anions & Large because gain electrons \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} If isoelectric ions (all same e configuration) & greatest protons has greatest charge and lowest melting point because smaller radius because e pulled closer \tn % Row Count 10 (+ 6) % Row 3 \SetRowColor{white} Coulumb's law & F=q1q2/r2 \tn % Row Count 11 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.88 cm} x{5.12 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Dispersion}} \tn % Row 0 \SetRowColor{LightBackground} Dispersion & IMFs that area always present \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Induced dipoles \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} & major contributor to IMFs \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Relationships} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} Larger & More dispersion \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} Higher bp and mp & More dispersion \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} More polarizable & Stronger dispersion \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.6 cm} x{6.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Hydrogen bonding}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Definition} & Hydrogen atoms covalently bonded to NOF \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{These bonds have a large electronegativity difference which creates large bond dipoles and large partial charges.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{e defficient hydrogen in one molecule gets close with e rich NOF in another} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Stronger electrostatic interactions are more likely} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.6 cm} x{6.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Dipole-Dipole Forces}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Only occur in polar molecules} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Permanent dipole} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \seqsplit{Definition} & Polar molecules have opposite parellel charges, Opposite partial charges interacting with partial charges of other molecules create dipole diploe forces \tn % Row Count 7 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.88 cm} x{5.12 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Predictions of solubility}} \tn % Row 0 \SetRowColor{LightBackground} Soluble if & charge is less than 4 \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Large radius & More soluble \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Electrostatic interactions vs atomic structure}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Strucute of ionic compounds maximumizes electrostatic attraction with overall charge neutrality} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Solid close together} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Strong, weak electrolytes}} \tn % Row 0 \SetRowColor{LightBackground} Strong \seqsplit{electrolytes} & Soluble, Charges less than 4, atoms move more freely, conducts electricity \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Weak \seqsplit{electrolytes} & Slightly or nonsoluble, dont conduct electricity, charges greater than 4 \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.6 cm} p{2.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Charge neutraity -\textgreater{} formula ionic compounds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Charges =0} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} cross multiply & reduce \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.48 cm} x{3.52 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Features ionic comp. influence solubility}} \tn % Row 0 \SetRowColor{LightBackground} If product of charges greater than 4 & Insoluble \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} The large the ion & more soluble b/c weaker IMFs \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.76 cm} x{4.24 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Ionic charge vs period. trend e config.}} \tn % Row 0 \SetRowColor{LightBackground} Electronegativity & Increases to top right \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} E- nuclear attration & increases to top right \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Cations & Smaller that og, b/c loose e- \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} Anions & Large than o.g, b/c gain e- \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} Charge ions acquire when they react & determined by e configuration driven by stability of full outer shell \tn % Row Count 12 (+ 4) % Row 5 \SetRowColor{white} electrons go from & metal to nonmetal \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{IMFs to explain protein structure}} \tn % Row 0 \SetRowColor{LightBackground} Protein & Natural polymer by combo of smaller molecules (monomers) \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Primary structure & Unique sequence amino acids \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Secondary structure & Localized folding proteins \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Tertiary & 3D strucute of a peptide chain formed by interactions between R-groups \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Strength of IMFs explain protein folding}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Protein folding is determinded by strength of IMFs.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Polar folds & toward water \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} Intermolecular interactions with H2O and Intramolecular interactions between amino acid residues & folding into structural confirmation that is most energetically stable in the environment \tn % Row Count 8 (+ 5) % Row 3 \SetRowColor{white} Intra & specific chain folding \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Looks for like places to bond to} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Strong stabilizes} \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Properties by chain length, branching}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Chain length and branching impact chain shape and interactions} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Longer & More density, more IMFs \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} Shorter, More branching & less rigid, weaker IMFs, lower density \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Functional groups relate to IMFs}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Add unique characteristics to each monomer} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Each has distinct IMFs} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Common Functional groups}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/noelleevelyn_1734298949_commonfunctgroups2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Funct. groups of polymer chains vs interactions}} \tn % Row 0 \SetRowColor{LightBackground} Functional groups impact & how molecules interact with eachother and other suvstances \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Functional groups & predict interactions \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Structural Formulas and Line Structures}} \tn % Row 0 \SetRowColor{LightBackground} Double bond & Two parellel lines \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Carbons & Bends and Ends \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} Hydrogen & Fulfill octet rule for carbons \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Physical P. strength IMFs + molecular structure}} \tn % Row 0 \SetRowColor{LightBackground} Physical properties & Emerge from IMFs among millions of molecules \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} IMFs arise because of & uneven changing charge \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} Stronger IMFs & More Energy required to seperate \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} Physical properties & determined by polarity and polarizability and possiblity of hydrogen bonding \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} Physical Properties of carbon based compounds & determined by molecular shape, size and functionality \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Periodic trends of IMFs}} \tn % Row 0 \SetRowColor{LightBackground} Stronger IMFs & Higher mp and bp \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Stronger IMFs & Lower vapor pressure and viscosity \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Polarizability & Tendancy to develope temporary dipoles \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Large molecule, Stronger IMFs & more polarizable \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2 cm} x{6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Strength of IMFs}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Dispersion} & Stronger with larger molecules/ more e- \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Increases & Dispersion, Dipole-Dipole, Hydrogen bonding, Ion-Dipole \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Stronger IMFs & Higher bp \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.88 cm} x{3.12 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Types of IMFs Present}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{All have dispersion forces} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Polar & Dipole-Dipole forces \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} H+N,O,F & Hydrogen Bonding \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Ionic compound + polar molecule & Ion-dipole \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{5.92 cm} x{2.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Relative Energy Range}} \tn % Row 0 \SetRowColor{LightBackground} Intermolecular interactions weaker than & Covalent bonds \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Sharing e is a stronger attraction, more stable higher E because e closer to nucleus} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}