Predicts behavior protein in solvents

PP polymer to degree cross linking chains

Side with most compatible IMFs

than 2

w/solvent

Oils (hydrocarbons)

Additives (alter

properties)

Physical

properties Low degree

cross-linking

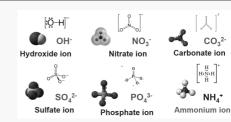
High degree

cross-linking

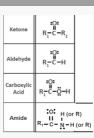
Cross-linking

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Intermolecular forces vs Intramolecular forces		
Intermolecular For	rces Between macromolecules	
Intramolecular For	rces happen within	
IMFs to explain membranes		
Hydrophilic heads	in water (polar)	
Hydrophobic tails	away from water (nonpolar)	
Electroneg. diff. vs bond polarity -> ions		
The larger the electronegativity difference, the more polar the bond		
When electr- oneg. greater		


Predict charges Polyatomic ions

Polyatomic ions	Ionic compounds	
ions in lattice	Molecular ions (seceral atoms covalently bonded)	
OH- NO3- CO3,2-, SO42-, PO43-, NH4+		
Charges balance out		
Identify monomers to form Polymers		
Monomers	building blocks of polymers	


Addition	link up amide formation combining carboxylic acide
formation	+ amine = amine to N
Type of	impacts final structure

polymerization

Ionic compound nomenclature

Common Functional groups

Unit cell

Repeating units that build the crystal lattice

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

By NoelleEvelyn

Not published yet. Last updated 15th December, 2024. Page 1 of 4.

will be on outside if dissolves

opposite water (nonpolar)

(polar)

Substances added to polymeric materials

highly increased by degree cross-linking

or connecting with ionic

More flexible, more soluble

more rigid, higher mp, bp

2 or more molecules together with covalent bond

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Strength + #C influence mixing

A mixture will only mix if it meets atleast one of the two criteria		
1.	Mixed version has more configurations	
2.	Mixed version has lower Ep (thermody- namics)	
Exothermic reactions desired	Loose energy, don't require energy to occur	
Temperature can impact		
Bottom right on PEC diagram		

Polarizability and Molecular Geometry impacts IMFs

Larger	More dispersion, because more space for IMFs intera- ctions
Distertion from polarizability (e cloud disterted by external electric field)	causes temporary dipoles that induce dispersion forces.
Polarizability increases	Dispersion increases

PP. Ionic compounds vs elctrostatic interactions

lonic compounds tend to be solids with high melting and boiling points, becasue ion-ion electrostatic forces are strong

Size cat. +an. periodic trends, coulumbs law		
Cations	Smaller because they loose elctrongs	
Anions	Large because gain electrons	
If isoelectric ions (all same e configuration)	greatest protons has greatest charge and lowest melting point because smaller radius because e pulled closer	
Coulumb's law	F=q1q2/r2	

Dispersion	
Dispersion	IMFs that area always present
	Induced dipoles
	major contributor to IMFs
Relationships	
Larger	More dispersion
Higher bp and mp	More dispersion
More polarizable	Stronger dispersion

Hydrogen bonding

Definition Hydrogen atoms covalently bonded to NOF

These bonds have a large electronegativity difference which creates large bond dipoles and large partial charges.

e defficient hydrogen in one molecule gets close with e rich NOF in another

Stronger electrostatic interactions are more likely

Dipole-Dipole Forces

Only occur in polar molecules

Permanent dipole

Definition	Polar molecules have opposite parellel charges,	
	Opposite partial charges interacting with partial charges	
	of other molecules create dipole diploe forces	

Predictions of solubility

Soluble if

Large radius

charge is less than 4 More soluble

Electrostatic interactions vs atomic structure

Strucute of ionic compounds maximumizes electrostatic attraction with overall charge neutrality

Solid close together

By NoelleEvelyn

Not published yet.

Last updated 15th December, 2024. Page 2 of 4.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

01			
Strong.	weak	electrol	vtes

Strong	Soluble, Charges less than 4, atoms move more
electrolytes	freely, conducts electricity
Weak electr-	Slightly or nonsoluble, dont conduct electricity,
olytes	charges greater than 4

Charge neutraity -> formula ionic compounds

Charges =0 cross multiply

reduce

Features ionic comp. influence solubility

If product of charges greater than 4	Insoluble
The large the ion	more soluble b/c weaker IMFs

lonic charge vs period. trend e config.

Electronegativity	Increases to top right
E- nuclear attration	increases to top right
Cations	Smaller that og, b/c loose e-
Anions	Large than o.g, b/c gain e-
Charge ions acquire when they react	determined by e configuration driven by stability of full outer shell
electrons go from	metal to nonmetal

IMFs to explain protein structure

Protein	Natural polymer by combo of smaller molecules (monomers)
Primary structure	Unique sequence amino acids
Secondary structure	Localized folding proteins
Tertiary	3D strucute of a peptide chain formed by intera- ctions between R-groups

Strength of IMFs explain protein folding

Protein folding is determinded by	y strength of IMFs.
-----------------------------------	---------------------

Polar folds	toward water
Intermolecular interactions with H2O and Intramolecular intera- ctions between amino acid residues	folding into structural confir- mation that is most energe- tically stable in the enviro- nment
Intra	specific chain folding
Looks for like places to bond to	

Strong stabilizes

Properties by chain length, branching

Chain length and branching impact chain shape and interactions

Longer	More density, more IMFs
Shorter, More branching	less rigid, weaker IMFs, lower density

Functional groups relate to IMFs

Add unique characteristics to each monomer

Each has distinct IMFs

Common Functional groups

Ether	R ₁ -Ö-R ₂
Amine	R-N-R2
Phenyl	
Alcohol	R-Ö-H
Phenyl	

Funct. groups of polymer chains vs interactions	
Functional groups impact	how molecules interact with eachother and other suvstances
Functional groups	predict interactions

By NoelleEvelyn

Not published yet. Last updated 15th December, 2024. Page 3 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Structural Formulas and Line Structures	
Double bond	Two parellel lines
Carbons	Bends and Ends
Hydrogen	Fulfill octet rule for carbons
Physical P. strength IM	Fs + molecular structure
Physical properties	Emerge from IMFs among millions of molecules
IMFs arise because of	uneven changing charge
Stronger IMFs	More Energy required to seperate
Physical properties	determined by polarity and polarizability and possiblity of hydrogen bonding
Physical Properties of carbon based compounds	determined by molecular shape, size and functionality

Types of IME's Present	
All have dispersion forces	
Polar	Dipole-Dipole forces
H+N O F	Hydrogen Bonding

lonic compound + polar molecule	lon-dipole
H+N,O,F	Hydrogen Bonding

Covalent bonds

Relative Energy Range

Intermolecular interactions weaker than

Sharing e is a stronger attraction, more stable higher E because e closer to nucleus

Periodic trends of IMFs

Stronger IMFs	Higher mp and bp
Stronger IMFs	Lower vapor pressure and viscosity
Polarizability	Tendancy to develope temporary dipoles
Large molecule, Stronger IMFs	more polarizable

Strength of IMFs Dispersion Stronger with larger molecules/ more e Increases Dispersion, Dipole-Dipole, Hydrogen bonding, Ion-Dipole Stronger Higher bp IMFs Higher bp

By NoelleEvelyn

Not published yet. Last updated 15th December, 2024. Page 4 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com