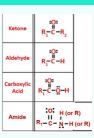
PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Intermolecular forc	es vs Intramolec	ular forces	
Intermolecular Fore	ces Between macromolecules		
Intramolecular Fore	ces ha	ppen within	
IMFs to explain me	mbranes		
Hydrophilic heads	in wate	er (polar)	
Hydrophobic tails	away	from water (nonpolar)	
Electroneg. diff. vs	bond polarity ->	ions	
The larger the elec	tronegativity diffe	erence, the more polar the bond	
When electr-	bonding e spend most time close to nometals,		
oneg. greater	ionic bond instead of shared e covalent bond		
than 2			
Predicts behavior p	protein in solvent	S	
Side with most con	npatible IMFs	will be on outside if dissolves	
w/solvent		(polar)	
Oils (hydrocarbons) opposite water (nonpolar)			
PP polymer to deg	ree cross linking	chains	
Additives (alter	Substances added to polymeric materials		
properties)			
Cross-linking	2 or more molecules together with covalent bon		

Drodict	charges	Doly	otomic	ione
Predict	charges	POly	alomic	IONS

Polyatomic ions	Ionic compounds		
ions in lattice Molecular ions (seceral atoms covalently bonded)			
OH- NO3- CO3,2-, SO42-, PO43-, NH4+			
Charges balance out			
Identifi menemen te ferm Delumere			


Identity monomers to form r orymers		
Monomers	building blocks of polymers	
Addition formation	link up amide formation combining carboxylic acide + amine = amine to N	
Type of polymerization	impacts final structure	

Ionic compound nomenclature

Additives (alter properties)	Substances added to polymeric materials
Cross-linking	2 or more molecules together with covalent bond or connecting with ionic
Physical properties	highly increased by degree cross-linking
Low degree cross-linking	More flexible, more soluble
High degree cross-linking	more rigid, higher mp, bp

Common Functional groups

Unit cell

Repeating units that build the crystal lattice

By NoelleEvelyn

Not published yet. Last updated 15th December, 2024. Page 1 of 4.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Strength +	#C	influence	mixina
Ou chigur •	πO	muchec	mining

A mixture will only mix if it meets atleast one of the two criteria			
1.	Mixed version has more configurations		
2.	Mixed version has lower Ep (thermody- namics)		
Exothermic reactions desired	Loose energy, don't require energy to occur		
Temperature can impact			
Bottom right on PEC diagram			

Polarizability and Molecular Geometry impacts IMFs

Larger	More dispersion, because more space for IMFs intera- ctions
Distertion from polarizability (e cloud disterted by external electric field)	causes temporary dipoles that induce dispersion forces.
Polarizability increases	Dispersion increases

PP. Ionic compounds vs elctrostatic interactions

lonic compounds tend to be solids with high melting and boiling points, becasue ion-ion electrostatic forces are strong

Size cat. +an. periodic trends, coulumbs law			
Cations	Smaller because they loose elctrongs		
Anions	Large because gain electrons		
If isoelectric ions (all same e configuration)	greatest protons has greatest charge and lowest melting point because smaller radius because e pulled closer		
Coulumb's law	F=q1q2/r2		

Dispersion	
Dispersion	IMFs that area always present
	Induced dipoles
	major contributor to IMFs
Relationships	
Larger	More dispersion
Higher bp and mp	More dispersion
More polarizable	Stronger dispersion

Hydrogen bonding

Definition Hydrogen atoms covalently bonded to NOF

These bonds have a large electronegativity difference which creates large bond dipoles and large partial charges.

e defficient hydrogen in one molecule gets close with e rich NOF in another

Stronger electrostatic interactions are more likely

Dipole-Dipole Forces

Only occur in polar molecules

Permanent dipole

Definition	Polar molecules have opposite parellel charges,
	Opposite partial charges interacting with partial charges
	of other molecules create dipole diploe forces

Predictions of solubility

Soluble if Large radius charge is less than 4 More soluble

Electrostatic interactions vs atomic structure

Strucute of ionic compounds maximumizes electrostatic attraction with overall charge neutrality

Solid close together

By NoelleEvelyn

Not published yet.

Last updated 15th December, 2024. Page 2 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Strong, weak electrolytes		Strength of IMFs explain protein folding			
Strong Soluble, Charges less than 4, atoms move more		Protein folding is determinded by strength of IMFs.			
electrolytes	freely, conducts electricity		Polar folds		toward water
Weak electr- olytes Slightly or nonsoluble, dont condu- charges greater than 4 Charge neutraity -> formula ionic compounds		duct electricity,	H2O and Intramolecular intera- ctions between amino acid tically stable in the		folding into structural confir- mation that is most energe- tically stable in the enviro-
			residues		nment
Charges =0	100	luce	Intra specific chain folding		specific chain folding
cross multiply	Tec	Juce	Looks for like places to bond to		
Features ionic	comp. influence solubility		Strong stabilizes		
If product of c	harges greater than 4 Insoluble		Properties by chain	length, branching	9
The large the	ion more sol	uble b/c weaker IMFs	Chain length and bra	anching impact c	hain shape and interactions
			Longer	More de	ensity, more IMFs
	rs period. trend e config.		Shorter, More branc	hing less rigi	d, weaker IMFs, lower density
Electronegativity Increases to top right					
E- nuclear attration increases to top right		Functional groups relate to IMFs			
Cations Smaller that og, b/c loose e-			Add unique characteristics to each monomer		
Anions	nions Large than o.g, b/c gain e-		Each has distinct IMFs		
Charge ions acquiredetermined by e configuration driven bywhen they reactstability of full outer shell			Common Functional groups		
electrons go fi	rom metal to nonmetal				
IMFs to explai	in protein structure				Ö_−R₂
Protein	Natural polymer by combo of s (monomers)	maller molecules		Amine R- Phenyl R-C	
Primary structure	Unique sequence amino acids			Alcohol R	-ё-н
Secondary structure	Localized folding proteins		Funct. groups of pol		
Tertiary 3D strucute of a peptide chain formed by intera- ctions between R-groups		Functional groups impact	other suvstand		
			Functional groups	predict interact	tions
	By NoelleEvelyn	Not published yet. Last updated 15th De	ecember, 2024.		by CrosswordCheats.com

Last updated 15th December, 2024. Page 3 of 4. Learn to solve cryptic crosswords! http://crosswordcheats.com

PChem Unit 3 Cheat Sheet by NoelleEvelyn via cheatography.com/168075/cs/45270/

Structural Formulas and Line Structures		
Double bond	Two parellel lines	
Carbons	Bends and Ends	
Hydrogen	Fulfill octet rule for carbons	
Physical P. strength IMFs + molecular structure		
Physical properties	Emerge from IMFs among millions of molecules	
IMFs arise because of	uneven changing charge	
Stronger IMFs	More Energy required to seperate	
Physical properties	determined by polarity and polarizability and possiblity of hydrogen bonding	
Physical Properties of carbon based compounds	determined by molecular shape, size and functionality	

Types of IMFs Present	
All have dispersion forces	
Polar	Dipole-Dipole forces

Polar	Dipole-Dipole forces
H+N,O,F	Hydrogen Bonding
lonic compound + polar molecule	Ion-dipole

Relative Energy Range

Intermolecular interactions weaker than

Covalent bonds

Sharing e is a stronger attraction, more stable higher E because e closer to nucleus

Periodic trends of IMFs

Stronger IMFs	Higher mp and bp
Stronger IMFs	Lower vapor pressure and viscosity
Polarizability	Tendancy to develope temporary dipoles
Large molecule, Stronger IMFs	more polarizable

Strength of IMFs Dispersion Stronger with larger molecules/ more e Increases Dispersion, Dipole-Dipole, Hydrogen bonding, Ion-Dipole Stronger Higher bp IMFs Higher bp

By NoelleEvelyn

Not published yet. Last updated 15th December, 2024. Page 4 of 4. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com