

FOB exam 3 Cheat Sheet

by NoelleEvelyn via cheatography.com/168075/cs/45854/

Phases of the cell cycle Mitosis		
Prophase	Chromosomes condense and spindle aparatus forms	
Promet- aphase	Kinetochores assembled at centromere, 2 opposite sides connected to microtubles	
Metaphase	Lined up on imaginary metaphase plate. Polar microt- ubles extend from each spindle, overlap in middle, pole-pole connection	
Anaphase	Cohesions are cleaved, daughters to opposite sides of cell. poles pulled apart	
Telophase	Nuclear envelope reforms, chromosomes begin to condence	
Cytoki- nesis	Division of cytoplasm	

Types of dominance	
Incomplete dominance	Phenotypes are blended together
	ex. pink flowers come from red and white allels
Co-dominance	Both phenotypes show up
	ex. polka dots

Mitosis	
Mitosis	When cells divide, two gentetically identical sister cells are their products
Uses	Somatic cells

G1 checkpoint		
1.	Cells big enough	
2.	Sufficient nutrients	
3.	social signals present	
4.	Cells undamaged	

G2 c	heckpoin	t	
1.	No err	ors in replication	
2.	Activa	ted MPF (cyclin + CDK) present	
3.	Undan	naged	
Meta	phase ch	neckpoint	
1.	Chromosomes attatch to spindles		
2.	Chron	Chromosomes properly segregated	
3.	MPF a	MPF absent	
Mech	nanisms (of cell cycle progression	
Nucle excis repai		1. Error detected in DNA by proteins	
		2. DNA nicking (cut at both sides of damage)	
		Helicase unwinds and removes region with damaged bases	
		4. DNA polymerase fills gap with undamadged strand	

as template

P53 gene

UVRA

recA

esisting strand.

Facilitates DNA repair

By NoelleEvelyn

Not published yet. Last updated 14th March, 2025. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

5. Nuleotide linkage (DNA ligase links the strand into

Creates CDK inhibitors if the cell is damaged so if cyclin is still present, CDK can still say no if damaged

recgonizes DNA damage, signals to start repair, if damage cant be repaired cell wont divide anymore.

If sucessful continues past G1 checkpoint

cheatography.com/noelleevelyn/

FOB exam 3 Cheat Sheet

by NoelleEvelyn via cheatography.com/168075/cs/45854/

Genes on X-chromosome	
The X chromosome is larger	it holds most all of the sex-linked traits
In females	Females have 2 copies of X chromosome When sex linked traits are recessive they would need 2 copies to express the mutation
In males	Males only have one X-chromosome Males only need 1 copy of recessive X-linked trait
	to express the mutation

Segregation and Independent assortment		
Law of segreg- ation	Each diploid parent forms a haploid gamete	
Independent assortment	Allels of different genes seperate indipendently of eachother to form gametes	

Epistasis	
Epistasis	The expression of one gene influences or masks the expression of another gene
	expression of another gene
Ex.	Fur color in golden retrievers

Greater than 50 map un	nits Independently assorting
Independent assortmen	nt
Linked genes	Do not follow rules of independent assortment
	Too close together on observe to

	assortment
	Too close together on chromosome to seperate
Closer genes are	More likely they are linked
Independent assortment	occurs between chromosomes not within

Reciprocal vs Test cross		
Reciprocal cross	The cross between a male with one phenotype and a female with another and then flipping	
	Determines if sex plays a role in inheritance	
Test Cross	Dominant phenotype crossed with recessive genotype	
	Determines genotype of dominant phenotype	

Genes arranged on chromosomes within genome		
Karyotype	# and visual appearance of gametes	
Genes hold	Instructions for making mRNA	
Homologous chromosomes	Same genes in same location, but different versions of gene	
Allels	versions of genes	
Genotype	Allels present	
Gene locus	location of genes	

Asexual vs Sexual reproduction	
Asexual	Sexual
No variation, exact clones	More variation
Quicker	Slower
Binary fission	Humans
Mitosis	Meiosis

Importance of Telomeres		
Protect from	important DNA being cut out	
Everytime cell divides	become shorter	
Replication limit	prevents cancer	
Why?	There is no 3' hydroxyl at end of lagging stand.	
What?	G-rich series of repeats	
Telomerase	elongates parental in 3' to 5' direction.	

By NoelleEvelyn

Not published yet. Last updated 14th March, 2025. Page 2 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/noelleevelyn/

Map distance for F2 generation

FOB exam 3 Cheat Sheet

by NoelleEvelyn via cheatography.com/168075/cs/45854/

Both leading and Lagging strands		
Single stranded binding proteins (SSBs)	Keep stands from attatching back together	
Ligase	Fills in gaps or breaks in phosphodiester bonds of backbone	
Helicase	Seperares, unwinds double stranded DNA	
Topoisomerase	Helps with stress on wound DNA, ex. Gyrase	

DNA synthesis in lagging strand		
Synthesized	in fragments (Okazaki fragments)	
Initiated by	RNA polymerase	
RNA polymerase	builds primers	
DNA polymerase	replicates DNA off of primers	
RNA primer	popped out of gaps and replaced with DNA polymerase	

DNA synthesis in Leading strand	
Synthesized	Continously
Begins with	RNA primer
After RNA primer	DNA polymerase

By NoelleEvelyn

Not published yet. Last updated 14th March, 2025. Page 3 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/noelleevelyn/