\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{njags21} \pdfinfo{ /Title (ap-biology-unit-5-heredity.pdf) /Creator (Cheatography) /Author (njags21) /Subject (AP Biology Unit 5 - Heredity Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{938FC7} \definecolor{LightBackground}{HTML}{F1F1F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{AP Biology Unit 5 - Heredity Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{njags21} via \textcolor{DarkBackground}{\uline{cheatography.com/122373/cs/22779/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}njags21 \\ \uline{cheatography.com/njags21} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 15th May, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{mendel}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{worked w pea plants} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} his theory us one of particulate inheritance & inherited characteristics are carried by genes \tn % Row Count 4 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.14011 cm} x{2.83689 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{nondisjunction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{error in meiosis where homologous chromosomes fail to separate as they should} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{one gamete receives two of the same type of chromosome and other receives no copy} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{remaining chromosomes may be unaffected and normal} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{if either aberrant gamete unites w normal gamete during fertilization, resulting zygote will have abnormal \# of chrom} \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} aneuploidy & any abnormal number of chromosomes \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} trisomy & if chromosome is present in triplet \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} trisomy 21 (Down syndrome) & extra chromosome 21 \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{cancer cells grown in culture almost always have extra chromosomes} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{organism in which cells have extra set of chromosomes is triploid (3n)} \tn % Row Count 18 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{4n tetraploid} \tn % Row Count 19 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{strawberries r octoploid} \tn % Row Count 20 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{polyploidy is COMMON in PLANTS} \tn % Row Count 21 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{results in platens of abnormally large size} \tn % Row Count 22 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{in some cases in responsible for evolution of new species} \tn % Row Count 24 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{crossover and linkage mapping}} \tn % Row 0 \SetRowColor{LightBackground} chiasma & physical bridge around point of exchange \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{result of crossover is recombination} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{crossover and recombination are major sources of variation in sexually reproducing organisms} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{one map unit distance on chromosome is distance within which recombination occurs 1 percent of the time} \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{crossover/recombination frequency} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} recombination frequency & number of recombinants / total \#offspring X 100 \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{can find recom frequency fro linked genes this way} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{is expressed as a percent} \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.78252 cm} x{1.19448 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{dihybrid cross}} \tn % Row 0 \SetRowColor{LightBackground} genotype (AaBb x AaBb) & 9:3:3:1 \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{linked genes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{is OPP to ia} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{if height is linked to seed color, genes will {\bf{not}} segregate independently} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{on SAME chromosome} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{genes that are adjacent and close to each other on same chromosome tend to move as unit and do NOT segregate} \tn % Row Count 7 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{genotype for two traits is dihybrid} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{humans have 46 chromosomes, so have 46 linkage groups} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{mendels second law: law of segregation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{during formation of gametes, two traits carried by each parent separate} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{are {\bf{not}} linked} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ex: monohybrid cross} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{trait not identified in either parent appears in F1 generation (recessive when 2 hetero)} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{intro}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{people used to think that inheritance was blended, a mixture of fluids that passed from parents to children} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.84609 cm} x{4.13091 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{probability}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{prob can predict average outcome} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{absolute certainty is 1} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \seqsplit{multiply} & prob of two independent events, multiply chance of one by chance of other \tn % Row Count 5 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: chance of a couple having two boys (1/2 x 1/2)} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} add & more than one arrangement of events producing the specified outcome is possible \tn % Row Count 9 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{order matters} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ex: couple having children, one boy one girl in either order} \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{boy and then girl is 1/2 x 1/2 = 1/4} \tn % Row Count 13 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{girl then boy is 1/4 too} \tn % Row Count 14 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1/4 + 1/4 = 1/2} \tn % Row Count 15 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{mendels third law: law of independent assortment}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{applies when cross is carried out bet two individuals hybrid for two or more traits} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{that are NOT on the same chromosome} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{dihybrid cross} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: height segregates independently from seed color} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{only factor that det how these alleles segregate or assort is how homologous pairs line up in metaphase 1 which is {\bf{random}}} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{mendels first law: law of dominance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{only dominant trait shows} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{recessive is hidden} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{incomplete dominance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{BLENDING} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{neither trait is dominant} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{genotype is cap letters} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: red Japanese flower crossed w white one} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{produces pink offspring} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.24425 cm} x{3.73275 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{chromosomal abberations}} \tn % Row 0 \SetRowColor{LightBackground} deletion & fragment lacking a centromere is lost during cell division \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} inversion & chromosomal fragment reattaches to its go chromosome but in reverse orientation \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{translocation} & fragment of chromosome becomes attached to a non homologous chrom \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \seqsplit{polyploidy} & when cell or organism has extra {\bf{SETS?}} of chromosomes \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.64701 cm} x{4.32999 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{X inactivation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{early in development of the embryo of female mammal, one of the X chromosomes is inactivated in every somatic (body cell)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \seqsplit{embryo} & an unborn or unhatched offspring in the process of development \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{inactivation occurs randomly} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{results in embryo that is a genetic mosaic (some cells have one X activated, some have other)} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{all cells of female mammals are NOT identical} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{inactivated chromosome condenses into dark spot of chromatin can be seen at the outer edge of nucleus of all somatic cells in female} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\textasciicircum{} Barr body} \tn % Row Count 13 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex female calico cats (pg 141)} \tn % Row Count 14 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{another ex of x chrom inactivation is when certain x linked recessive mutation prevents the development of sweat glands} \tn % Row Count 17 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{heterozygous for some does NOT mean carrier} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\textasciicircum{} has patches of normal skin and patches of skin lacking sweat glands} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{polygenic inheritance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{blending of several sep genes that vary along a continuum} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{bell shaped curve} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ex: skin color, hair color, height} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{epistasis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{two separate genes control one trait} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{one gene MASKS the expression of the other gene} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{the gene that MASKS is epistatic to the gene it masks} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.9954 cm} x{3.9816 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{gene interactions}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{pleiotropy} & ability of one single gene to affect an organism in several or many ways \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex is autosomal recessive disease cystic fibrosis} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{characterized by abnormal thickening of mucus that coats certain cells} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{instead of protecting body, thick mucus builds up in pancreas, lungs, digestive tract} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{pleiotropic affects: poor absorption of nutrients in the intestine and chronic bronchitis} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.53367 cm} x{1.44333 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{multiple alleles}} \tn % Row 0 \SetRowColor{LightBackground} most genes in a pop exist in two allelic forms & ex tall or short \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{multiple alleles is when there are more than two allelic forms of a gene} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 4 diff blood groups & A, B, AB, O \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{are set by specific molecules on surface of red blood cells} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3 alleles that det those (ABO)} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} A and B are codominant & I\textasciicircum{}A\textasciicircum{} and I\textasciicircum{}B\textasciicircum{} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{I stands for immunoglobin} \tn % Row Count 11 (+ 1) % Row 7 \SetRowColor{white} O is recessive & i \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{codominance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{BOTH traits show} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: MN blood groups in humans} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{NOT related to ABO blood groups} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{3 diff blood groups (M, N, MN)} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{based in distinct molecules located not he surface of the red blood cell} \tn % Row Count 6 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{single gene locus at which two allelic variants are possible} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{more to it but won't put here} \tn % Row Count 9 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{incomplete dominance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{BLENDING} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{neither trait is dominant} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{genotype is cap letters} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: red Japanese flower crossed w white one} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{produces pink offspring} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{beyond mendelian inheritance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{mendelian laws apply to traits set by a {\bf{single gene}} for which there are only two alleles} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{now we can do ones w 2 or more genes} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.54287 cm} x{3.43413 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{more exceptions to mendelian inheritance}} \tn % Row 0 \SetRowColor{LightBackground} genomic imprinting & variation in phenotype depending on whether a trait is inherited from the mother or the father \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{occurs in gamete formation} \tn % Row Count 5 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{caused by silencing of a particular allele by methylation of DNA} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{zygote expresses only one allele of the imprinted gene} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{located on autosomes, not on x chromosome} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} \seqsplit{extranuclear} genes & located in mitochondria and chloroplasts \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{dna in these organelles is small, circular, carries only a small \# of genes} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{linked to several severe and rare inherited diseases in humans} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{since products of mito. genes involved w energy production} \tn % Row Count 18 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{defects (mutations) in these genes cause weakness and deterioration in muscles} \tn % Row Count 20 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{mito. dna is inherited only from mother bc fathers mito. do no not enter egg during fertilization} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{genes and the environment}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{environment can alter the expression of genes} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{in fruit flies, vestigial wings can be altered by temp} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{when raised in hot environment, can grow wings almost as long as normal wild type wings} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{many human diseases have a multifactorial basis} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{is an underlying genetic component w a significant environmental influence} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex: heart disease, diabetes, cancer, alcoholism, schizophrenia, and bipolar disorder} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{also development of intelligence is result of interaction of genetic predisposition and the environment or nurture and nature} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{penetrance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{proportion or percentage of individuals in a group w a given genotype that actually shows the expected phenotype} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ex is breast cancer allele who don't get breast cancer (pg 138)} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{sex linkage}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{46 chromosomes} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{44 are autosomes} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} 2 sex chromosomes & X and Y \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{few genes carried on Y chromosome} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} Females XX & can inherit two copies of the sex linked genes \tn % Row Count 7 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{can be carrier} \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} Males (XY) & only inherit one X linked gene \tn % Row Count 10 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{recessive sex linked is more common than dominant sex linked} \tn % Row Count 12 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{males suffer w sex linked more than females} \tn % Row Count 13 (+ 1) % Row 9 \SetRowColor{white} ex for recessive six linked traits & color blindness, hemophilia, Duchenne muscular dystrophy \tn % Row Count 16 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{all daughters of affected fathers are carriers} \tn % Row Count 17 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{sons CANNOT inherit sex linked traits from father bc son inherits Y chromosome from him} \tn % Row Count 19 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{son has 50 \% chance of inheriting sex linked from carrier mother} \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.78712 cm} x{2.18988 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{mutations}} \tn % Row 0 \SetRowColor{LightBackground} mutations & any changes in the genome \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{can occur in somatic cells and be responsible for cancer} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} or during gametogenesis & affect future offspring \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} radiation and certain chemicals cause mutations & but when and where is random \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} two types: & gene and chromosomal \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} gene mutations & caused by change in DNA sequence \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{some human genetic disorders caused by both types} \tn % Row Count 14 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{gene mutations cannot be seen under a microscope} \tn % Row Count 15 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{chromosomal can} \tn % Row Count 16 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{karyotype show size, number and shape of chromosomes} \tn % Row Count 18 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{can reveal presence of certain abnormalities} \tn % Row Count 19 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{can be used to scan fro chromosomal abnormalities in developing fetuses} \tn % Row Count 21 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{3 conditions that occur from nondisjunction in formation of ovum or sperm} \tn % Row Count 23 (+ 2) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{ADD ACTUAL MUTATIONS ANDDDDDDD LINKAGE MAPPPP} \tn % Row Count 24 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}