Cheatography

AP Biology Unit 4 - Mitosis & Meiosis Cheat Sheet by njags21 via cheatography.com/122373/cs/22778/

why do cells divide		
growth, re	epair, reproduction	
mitosis	produces 2 genetically identical daughter cells (called clones)	
preserves diploid (2n) chromosome number		
passes a child	complete genome from parent to	
genome	whole of its hereditary inform- ation encoded in its DNA, includes both the genes and the non-coding sequences of the DNA	
meiosis	in sexually reproducing organisms, results in haploid cells (have half the chromosome	

structure of a replicated chromosome

of the parent)(n)

replicated chromosome consists of two sister chromatis where one is an exact copy of the other.

centromere is a specialized region that holds the two chromatids together

kinetochore is a disc-shaped protein on the centromere that attaches the chromatid to the mitotic spindle during cell division

By **njags21** cheatography.com/njags21/

cell cycle basics

bone marrow cells	always dividing to produce constant supply of red and white blood cells	
liver cells	arrested in G0 (have stopped dividing) can be induced to divide about/- regenerate when liver tissue is damaged	
human intestine cells	divide ab twice a day to renew tissue destroyed during digestion	
specialized cell ex (nerve cells)	do not divide at all	
process is regulated in any case by a complex mechanism involving kinases and		

complex mechanism involving kinases and allosteric interactions

ratio of volume limit cell size and of cell to SA promote cell division and capacity of nucleus to control the entire cell

ratio of cell volume to sa

as cell grows, sa increases as the square of the radius and volume increases as the cube of the radius

volume inside cell grows at faster rate than cell membrane

determines when cell divides

capacity of nucleus

nucleus must be able to provide enough info to produce adequate quantities of all substances to meet the cells needs		
bc of this metabolically active cells are usually small		
can be large active cells like paramecium		
-has two nuclei that each control diff cell functions		
human skeletal muscle cells	giant multinucleate cells	
fungus slime molds	consist of one giant cell that has thousands of nuclei	

cell division and cancerous cells

contact	normal cells grow and	
inhibition//-	divide until they become	
density	too crusaded then they stop	
dependent	and enter G0	
inhibition		
anchorage	to divide, cell must be	
dependence	attached or anchored to	
(ANIMALS)	some surface	
can be Petri dish (in vitro) or extracellular		
membrane (in vivo)		
cancer cells show none of these two things		
divide uncontrollably, and do not have to be		

divide uncontrollably, and do not have to be anchored to any membrane

^is why cancer cells can migrate or metastasize to other regions of body

Not published yet. Last updated 14th May, 2020. Page 1 of 5. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

AP Biology Unit 4 - Mitosis & Meiosis Cheat Sheet by njags21 via cheatography.com/122373/cs/22778/

regulation and tir	ning of the cell cycle		regulatio	n and
2	regulates the rate at which cells divide		(cont) cdk persis	ts in c
,	s stop signals that halt		becomes	
cell unless override	1 0			
checkpoints in G1,			interphas	е
G1 is most importa cell will most likely	ant, if receive go ahead, complete cycle		G1	inter her r
if it doesn't, it will g	o to G0 and become a		S	synt
non dividing cell			G2	cell
0 ,	is initiated by growth lled by 2 molecules			com divis
cyclins and protein	kinases		more than	90%
cyclins get name b fall in dividing cells	oc levels cyclicly rise and		in interpha condense	
synthesized during every S and G2 phase centrosome		ne con		
broken down after	M phase		may be se	en in t
kinases are and u	piquitous class of proteins	;	centroson	ne is d i
that activate other lating them	proteins by phosphory-		G2 - M	two
only activated whe	n bound to a cyclin		transition	one oppo
named cyclin depe	endent kinases (cdk)		plant cells	
when cdk binds to compels is formed	a cyclin, cyclin cdk		microtubu	le orga
ex of this is mpf wl	nich triggers cells	•	these hav	e trie s
passage from G2 t	to mitosis		mitosis	
maturation (mitosis	s) promoting factor		Mitosis, or somatic o	ell division
	ecular events required fro lensation and spindle rophases		prophase plasma membrane cytoplasm brand trated envelop with two chromadidis hold sortheraing the interchant contensing the interchant sortheraing the interchant together at the interchant	
after M phase, during anaphase, mpf				

after M phase, during anaphase, mpf switches off by initiating process that leads to the breakdown of cyclin

timing of the cell cycle

cell in inactive form until f mpf again

interpha	ise
G1	intense growth and bioc- hemical activity
S	synthesis/replication of DNA
G2 cell continues to grow and complete preparations for cell division	
more than 90% of cells life is in interphase	

hromatin is threadlike, not

nsisting of two centrioles the cytoplasm of ANIMAL

centrosome	is duplicated during s phase
G2 - M	two centrosomes separate from

	two centrosomes separate nom
ransition	one another and move to
	opposite poles

centrosomes but have anizing centers (MTOCs)

same function

consists of the actual dividing of the nucleus

begins during anaphase

dividing of the cytoplasm

animal cells: cleavage furrow froms down middle of cell as actin and myosin microfilaments pinch in the cytoplasm

plant cells: cell plate forms during telophase as vesicles from golgi coalesce down middle of cell, daughter plant cell DO NOT separate

new cell wall forms and sticky middle lamella cements adjacent cells together

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com

By njags21

cheatography.com/njags21/ Last upo

Not published yet. Last updated 14th May, 2020. Page 2 of 5.

Cheatography

AP Biology Unit 4 - Mitosis & Meiosis Cheat Sheet by njags21 via cheatography.com/122373/cs/22778/

cyclin vs cdk

activity of cdk rises and falls depedning on changes in concen of cyclin

peaks of mpf activity correspond to rise in cyclin concentration

cyclin leves rise during S and G2 phases and then fall abrubtly during the M phase

meiosis

generates genetic diversity that is the raw material for natural selection and evolution

produces gametes (ova and sperm)

have haploid or monoploid chromosomes (n)

half genetic material of parent cell

nucleus divides twice

each gamete differs genetically from every other gamete

sexual reproduction involves fusion of two haploid gametes and restores diploid chromosome # to offspring

meiosis I	homologous chromo-
reduction	somes separate
division	

each chromosome pairs up w homologue in synaptonemal complex by process called synapsis

forms structure called tetrad (set of 4) or bivalent (in pairs)

by aligning/binding crossing over is likely

^process by which non sister chromatids exchange genetic material

results in recombination of genetic material

ensures greater variation among gametes

meiosis II like	sister chromatids
mitosis	separate into diff cells

prophase I

-synapsis, pairing of homologues occurs crossing over, exchange of homologous bits of chromosomes

-chiasmata, visible manifestations of the crossover events are visible

-sets stage for separation (segregation of DNA)

metaphase 1

spindle fibers from poles of the cell are attached to the centromeres of each pair of homologues

anaphase 1

telophase 1 / cytokinesis 1

in telophase: each pole has haploid # of chromosomes

cytokinesis occurs simultaneously w telophase 1

in some species interphase occurs bet meiosis 1 and 2, in other none

NO chromosome replication in bet meiosis 1 and 2

meiosis 2

meiosis and genetic variation

3 types of genetic variation occur from meiosis and fertilization

independent assortment of chromosomes, crossing over, random fertilization of an ovum by a sperm

independent assortment of chromosomes

homologous pairs separate depending on the random way they line up on the metaphase plate during metaphase 1

each pair of chromosomes can line up in two possible orientations

50% chance receive maternal chrom

50% chance receive paternal chrom bc 23 pairs of

possible # of combinations of chromosomes is 2^23 bc 23 pairs of chromosomes in humans

crossover

produces recombinant chromosomes that combine genes inherited from both parents

may be 2 to 3 crossover events in humans

metaphase 2 recombinant chromosomes line up on metaphase plate in random fashion

^increases possible types of gametes even more

random fertilization

human ovum and sperm represent 8 million possible chromosome combinations **resp**ectively

when one sperm	8 million x 8 million
fertilizes one	recombinations can
ovum	occur

chromosome # remains haploid

By **njags21**

cheatography.com/njags21/

Not published yet. Last updated 14th May, 2020. Page 3 of 5. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords! http://crosswordcheats.com