\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{njags21} \pdfinfo{ /Title (ap-biology-unit-2-cell-organelle-and-communication.pdf) /Creator (Cheatography) /Author (njags21) /Subject (AP Biology Unit 2 - Cell Organelle \& Communication Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FFA229} \definecolor{LightBackground}{HTML}{FFF9F1} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{AP Biology Unit 2 - Cell Organelle \& Communication Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{njags21} via \textcolor{DarkBackground}{\uline{cheatography.com/122373/cs/22738/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}njags21 \\ \uline{cheatography.com/njags21} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 12th May, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{cell theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. All things are made of cells} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. Cells are the basic units of structure and function in all living things} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. All cells come from pre-existing cells} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{endosymbiotic theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Mitochondria and chloroplasts were formerly small prokaryotes that began living within larger cells, may have gained entry as undigested prey or parasites.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{all eukaryotic cells came from bacterial cells that lived together} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{proof:all chloroplasts and mitochondria have own DNA and are autonomous (existing and functioning as an independent organism)} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{cell surface area to volume}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{smaller cell is faster and more efficient at supplying materials and removing waste than larger cell} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{once volume becomes too great for area of cell membrane, pathway is triggered and cell divides} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{water potential - def and vid}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{} \tn % Row Count 0 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{osmotic potential}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{potential of water molecules to move from a hypotonic solution (more water, less solutes) to a hypertonic solution (less water, more solutes) across a semi permeable membrane} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{tonicity}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589302921_tonicity : osmolarity.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{- turgor pressure - pressure that water molecules exert against cell wall (considered normal GOOD) \newline - plasmolysis - cells shrinking away from cell wall \newline - cytolysis - same as lyse} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.64701 cm} x{4.32999 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{diabetes}} \tn % Row 0 \SetRowColor{LightBackground} type 1 & insulin isn't produced, beta pancreatic cells damaged \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} type 2 & insulin/glucose receptors not working \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Hyperglycemia (high blood sugar), hypoglycemia (low blood sugar). Antagonist to insulin is glucagon.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{prokaryotic cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{unicellular bacteria} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{nucleoid region: DNA floating in cytoplasm, no true nucleus or nuclear membrane} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{considered first form of life - were most likely anaerobic} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{cell membrane: regulates transport; selective permeability} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{cell wall: protective layer external to cell membrane} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{*does not contain phospholipid or transport proteins} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{*peptidoglycan?} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{bacterial cell wall is often target for antibiotic treatment} \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{DNA exists freely in cytoplasm as closed loop} \tn % Row Count 15 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{ribosomes: protein synthesis location} \tn % Row Count 16 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{capsule: outside of cell wall; made of carbohydrate} \tn % Row Count 18 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{* limit the ability of phagocytes to engulf the bacteria} \tn % Row Count 20 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{* cannot be washed off easily} \tn % Row Count 21 (+ 1) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{pathogenic (causes disease)} \tn % Row Count 22 (+ 1) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{pills make it stick and can't wash off} \tn % Row Count 23 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{prokaryotic cells}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589143943_prokaryotic cell.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.78712 cm} x{2.18988 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{prokaryotes vs eukaryotes}} \tn % Row 0 \SetRowColor{LightBackground} pro & euk \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} No Membrane-Bound Organelles & Membrane-Bound Organelles \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} No Nucleus (single Circular DNA) & Multiple Linear DNA \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Free Ribosomes and cell wall & Histones on DNA \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{endomembrane system}} \tn % Row 0 \SetRowColor{LightBackground} all the different membranes within a eukaryotic cell's cytoplasm & divide the cell into compartments (organelles!) \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} nuclear membrane & double membrane that encloses the cell nucleus \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} er & connected to the nucleus; allows for reactions, membraneous; \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} rer & proteins, has a lot of ribosomes \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} ser & lipids, responsible for the detoxification of harmful chemicals \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} golgi body & packaging in membrane and signals for export \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} lysosomes & used for intracellular digestion and apoptosis, also to fuse w another vesicle to break down using its hydrolytic enzymes \tn % Row Count 26 (+ 7) % Row 7 \SetRowColor{white} vesicles & may carry hormones that help w body regulation, merges w plasma membrane, releases contents into the external envi, lysosome is a type of vesicle \tn % Row Count 34 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{endomembrane system (cont)}} \tn % Row 8 \SetRowColor{LightBackground} vacuoles & water and solutes; large and central in plants \tn % Row Count 3 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{cell membrane: regulates transport; selective permeability} \tn % Row Count 5 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{modifications for cell specificity :} \tn % Row Count 6 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{muscle cell has more rer bc of its need for protein} \tn % Row Count 8 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{liver cell has more ser bc of its role in detoxification} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.14471 cm} x{3.83229 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{rest of organelles}} \tn % Row 0 \SetRowColor{LightBackground} nucleus & holds DNA and nucleolus (where ribosomal subunits are made) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{mitochondria} & double membrane; outer is smooth and inside is folded with enzymes to make ATP (site of cellular respiration) \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \seqsplit{ribosomes} & site of translation-protein synthesis; made of rRNA and protein \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \seqsplit{cytoskeleton} & \seqsplit{Microfilaments-contractile} protein, gives shape, movement within cells; Microtubules-centrioles, cilia, flagella, spindle fibers \tn % Row Count 14 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ANIMAL} \tn % Row Count 15 (+ 1) % Row 5 \SetRowColor{white} \seqsplit{lysosomes} & contain enzymes; used for intracellular digestion and apoptosis \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} \seqsplit{Centrioles} & used in cell division \tn % Row Count 20 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{plants} \tn % Row Count 21 (+ 1) % Row 8 \SetRowColor{LightBackground} \seqsplit{Chloroplast} & double membrane; site of photosynthesis \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} Cell wall & middle lamella-pectin; primary cell wall-cellulose; secondary cell wall- lignin \tn % Row Count 26 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{nervous system}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Function; sensory input, motor function, regulation} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Structure; neuron, axon, dendrites, synapse} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Polarized neuron; Na+ outside, K+ and Cl- inside} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Depolarization moves Na+ into the neuron, generating an action potential} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Repolarization exchanges Na+ and K+ through the sodium-potassium pump} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{At the synapse, calcium channels open to allow calcium to rush in, stimulating release of neurotransmitters} \tn % Row Count 11 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Neurotransmitters released into synapse to generate action potential for motor neurons or muscle cells} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{link for signal transduction pathway}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{https://studylib.net/doc/9812188/cell-signaling-and-communication-{}-{}-part-2% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{cell signaling / signal transduction}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589245759_signal transduction.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{reception: when a receptor protein picks up a signaling molecule on the surface in the phospholipid bilayer. are other ways... \newline \newline transduction: series of relay molecules or other protein complexes will usually use ATP to transfer the signal down a signal transduction pathway and activate a response \newline \newline response: changes in enzyme activity, gene expression, and ion channel activity \newline \newline inactivation: is when response stops - can be apoptosis or a halt of the response.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{transduction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{a phosphorylation cascade} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{phosphorylation - addition of a phosphate group, generally from ATP to a protein or other organic molecule which turns many protein enzyme son and off} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{stp is merely a lot of different molecules being involved and carrying a signal from the original site of reception to then carry out a response} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.94103 cm} x{3.03597 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{second messangers}} \tn % Row 0 \SetRowColor{LightBackground} cAMP & broken down even more is cyclic adenosine monophosphate, intracellular messenger \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{calcium ions} \tn % Row Count 5 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{inositol triphosphate} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} can occur on nuclear level & genes turning on or off by activation of proteins called transcription factors in nucleus of cell and will activate or inactivate causing transcription of RNA which is then a messenger and is translated into a protein \tn % Row Count 16 (+ 10) % Row 4 \SetRowColor{LightBackground} organismal response & fight or flight response: encounter lion, could fight it or run away, activated by adrenaline \tn % Row Count 20 (+ 4) % Row 5 \SetRowColor{white} inactivation & can occur both in inactivation of simple nuclear responses or can be apoptosis (clean programmed cell death) \tn % Row Count 25 (+ 5) % Row 6 \SetRowColor{LightBackground} phagocytosis & one cell eats or breaks down another cell, used both in immune system and apoptosis \tn % Row Count 29 (+ 4) % Row 7 \SetRowColor{white} apoptosis & cells called phagocytes consume cell that have sent out signals that occur because of other complex signals that say they must disintegrate and be consumed \tn % Row Count 36 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{1.94103 cm} x{3.03597 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{second messangers (cont)}} \tn % Row 8 \SetRowColor{LightBackground} phagocytes & cyte (cell), phag (consume) \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{intracellular receptors}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{intracellular receptor proteins occur within one cell} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Is when a hormone or other ligand can go through phospholipid bilayer bc it is hydrophobic} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{has a receptor protein inside the cytoplasm of the cell} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{this often reacts with that receptor protein creating a hormone receptor complex that can enter into nucleus of cell and create RNA subscription?} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{ligand gated ion channel}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589249276_ligand gated ion channel.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{like a door or portal, when signaling molecule attaches to active site on this "gate" will open, usually involved in ion channels, a lot of ions will pass through creating a concentration gradient, on the way out will create ATP and energy of that will be harnessed by the cell} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{G protein coupled receptors (gpcr)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589246934_gpcr.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{involved at the surface of the cell a lot of the time w epinepherine//adreniline, affects the fight or flight respsonse in animals. hromone in the endocrine system and neurotransmitters in the synaptic cells} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{protein kinases (rtks)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589248935_rtk.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{kinase-enzyme that catalyzes transfer of phosphate groups from ATP to ADP when it goes through hydrolysis (water breaking off one phosphate ion from ATP). rtk-receptors that when they receive a signaling molecule at their active site, form an unphosphorylated dimer, makes ATP connect to this tyrosine which is a protein and that activates the rtk and turns it into a phosphorylated dimer. Then inactivated relay proteins attach to the phosphates on the dimer and are activated and result in response} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{active transport methods}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589306178_active transport methods.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{passive transport}} \tn % Row 0 \SetRowColor{LightBackground} no added energy required & movement of molecules from area of high to low concentration \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} concentration gradient & difference in concen of mlcs across a distance \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} diffusion & carbon dioxide and oxygen can pass through membrane bc small and non polar (soluble in lipids) \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} facilitated diffusion & polar molecules (water) need to pass through pore made by transport protein \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} osmosis & diffusion of water, water moves from high to low, amount of solute needs to be payed attention to \tn % Row Count 20 (+ 5) % Row 5 \SetRowColor{white} solute & solid that is dissolved in a solvent \tn % Row Count 22 (+ 2) % Row 6 \SetRowColor{LightBackground} solvent & liquid \tn % Row Count 23 (+ 1) % Row 7 \SetRowColor{white} hypertonic & high amount of solute, low amount of water in SOLUTION \tn % Row Count 26 (+ 3) % Row 8 \SetRowColor{LightBackground} hypotonic & low amount of solute, high water \tn % Row Count 28 (+ 2) % Row 9 \SetRowColor{white} isotonic & solute concen inside and outside are the same \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{passive transport (cont)}} \tn % Row 10 \SetRowColor{LightBackground} isotonic & water moves back and forth in equal amounts (no net movement), cell maintains shape \tn % Row Count 5 (+ 5) % Row 11 \SetRowColor{white} water moves from high concen of WATER to low concen of WATER & hypo to hyper \tn % Row Count 8 (+ 3) % Row 12 \SetRowColor{LightBackground} contractile vacuole & ex paramecium live in hypotonic, use these to collect excess water and then contract to push water out \tn % Row Count 14 (+ 6) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{our cells pump solutes out of cytosol to bring outside concen closer to inside} \tn % Row Count 16 (+ 2) % Row 14 \SetRowColor{LightBackground} plants & take in water through their roots through osmosis \tn % Row Count 19 (+ 3) % Row 15 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{1. molecule binds to carrier protein, 2. carrier protein changes shape, 3. protein releases the molecule to the outside, 4. protein returns to og shape} \tn % Row Count 23 (+ 4) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{second way of fd: ion channels, membrane proteins that allow only one specific type of ion through} \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{factors that affect the rate at which mlcs move across membrane: \newline temp- higher temp \newline starting concen- extreme diff in starting concen \newline size of particles- small \newline all diffuse at a faster rate} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.33919 cm} x{2.63781 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{active transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{requires added energy (ATP)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} moves from low to high concentration & up the concentration gradient (sodium potassium pump) \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} membrane pumps & carrier proteins that moves substances from low to high concentration \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} endocytosis (vesicle movement) & brings items into the cell, process b y which cells ingest external fluid, macromolecules or other large particles. Phagocytosis is cell eating and Pino cytosine is cell drinking \tn % Row Count 17 (+ 9) % Row 4 \SetRowColor{LightBackground} exocytosis (vesicle movement) & process by which a substance is released from a. cell through a vesicle that transports it to the cell surface and fuses w the cell membrane \tn % Row Count 24 (+ 7) % Row 5 \SetRowColor{white} & can fuse bc both made of phospholipids, layers press into each other and phospholipids rearrange a little so can open up their contents to the outside of the cell \tn % Row Count 32 (+ 8) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.33919 cm} x{2.63781 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{active transport (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{ALL REQUIRES ENERGYYYY} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{cytoskeleton}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{a complex of mesh protein filaments that extends throughout the cytoplasm} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{maintains cell shape} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{controls position of organelles within cell by anchoring them to plasma membrane} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} cytoplasmic streaming & flow of cytoplasm \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{anchors cell in place by interacting w extracellular elements} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{includes microtubules and microfilaments} \tn % Row Count 10 (+ 1) % Row 6 \SetRowColor{LightBackground} microtubules & hollow tubes made of tubulin protein which makes up cilia flagella and spindle fibers \tn % Row Count 14 (+ 4) % Row 7 \SetRowColor{white} \seqsplit{microfilaments} & made of actin filaments, support shape of cell \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{animal cells form cleavage furrow} \tn % Row Count 17 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{amoeba to move by sending out pseudopods} \tn % Row Count 18 (+ 1) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{skeletal muscles contract as they slide along myosin filaments} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{cytoplasm}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Separates the internal environment of the cell from the external environmen} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Phospholipid bilayer (selectively permeable; amphipathic)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Fluid mosaic model (in motion; proteins, cholesterol, glycoproteins, and glycolipids among phospholipids)} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{membrane is hydrophilic on the inside and outside, hydrophobic within the membrane} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{centriole, centrosome, mtoc}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{non membranous structures that lie outside NUCLEAR membranes} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{organize spindle fibers and give rise to spindle apparatus} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{two centrioles make up a centrosome (ANIMALS)} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{PLANTS have microtubule organizing center (mtoc) which does the same thing} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{cell membrane // proteins}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{give diff types of membranes their unique props} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{help w facilitated diffusion and active transport} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{connect cells together} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{participate in signal transduction} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{act as marker for cell identification} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} integral & permanent part of the membrane \tn % Row Count 7 (+ 2) % Row 6 \SetRowColor{LightBackground} peripheral & transiently (not perm) associated w either membrane or integral proteins \tn % Row Count 11 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{associations can be hydrophobic, electrostatic, or non covalent} \tn % Row Count 13 (+ 2) % Row 8 \SetRowColor{LightBackground} integral monotopic proteins & attached to only one of two leaflets don't span across membrane \tn % Row Count 17 (+ 4) % Row 9 \SetRowColor{white} transmembrane (are amphipathic - hydrophobic and phillic) & span bilayer, can be bitopic spanning across membrane once or polytonic (more than once) \tn % Row Count 22 (+ 5) % Row 10 \SetRowColor{LightBackground} lipid anchor proteins & covalently attached to lipids in the bilayer \tn % Row Count 25 (+ 3) % Row 11 \SetRowColor{white} post translational changes to integral and peripheral & addition of fatty acids, diacylglycerol, phrenyl chain, \tn % Row Count 28 (+ 3) % Row 12 \SetRowColor{LightBackground} hydrophobic affect & water molecules want to interact w each other so badly, anything getting in the way of their hydro bonds results in decreased entropy \tn % Row Count 35 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{cell membrane // proteins (cont)}} \tn % Row 13 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{detergent will disrupt transmembrane proteins bc r amphipathic and will get them out of the membrane} \tn % Row Count 2 (+ 2) % Row 14 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2 types of transmembrane proteins} \tn % Row Count 3 (+ 1) % Row 15 \SetRowColor{LightBackground} a helical & found in all membranes \tn % Row Count 5 (+ 2) % Row 16 \SetRowColor{white} b barrel & only in outer membranes of gram neg bacteria, mitochondria, chloroplasts \tn % Row Count 9 (+ 4) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{function as gateways allowing specific substances to pass across the membrane} \tn % Row Count 11 (+ 2) % Row 18 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{may undergo conformational changes} \tn % Row Count 12 (+ 1) % Row 19 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{most transmembrane proteins are glycosylated, sugar residues always present on non cytosol leaflet of bilayer} \tn % Row Count 15 (+ 3) % Row 20 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{as a result, cell surface is covered in carbs that form cell coat} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{channels / proteins}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Image could not be loaded.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} x{4.4793 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{apoptosis // capases}} \tn % Row 0 \SetRowColor{LightBackground} & pathways involving enzymes called capases carry out apoptosis \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{apoptosis is similar in single celled yeast and in mammalian cells means mechanism for apoptosis evolved early in the evolution of eukaryotic cells} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{long distance signaling}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589244862_endocrine system.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{in animals or humans through endocrine system - when specialized endocrine cells withing your glands and lymph nodes and lymphatic system will secrete things and those will travel through you blood and when reach any target cell, that will be effected and give a reaction. hormone ex: oxytocin, epinepherine, it is transported form endocrine system through the circulatroy system} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{local signaling}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589244537_local signaling.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{paracrine signaling - secreting cells, secrete molecules that diffuse from cell and whenever they hit a target cell w a receptor on surface that fits with molecule then will have an induced effect \newline \newline synaptic signaling - a motor neuron (efferent-sending signals out) will send some sort of molecule (the effect) across the synapse and will affect a target cell that is stimulated and then has another action potential or response. In muscle contraction, mol would be acetylcholine} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{communication by direct contact}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/njags21_1589243616_junctions.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{gap junctions - bet animal cells, junctions that allow molecules to play readily bet adjacent cells w/o crossing the plasma membrane \newline \newline plasmodesmata - bet plant cells \newline \newline cell to cell recognition - two animal cells may communicate by interactions bet molecules protruding from their surfaces. protiens or other molecules on the surface of cells jutting out can react w each other. they seem to fit together like a specific protein and a specific substrate} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}