
Java refresher Cheat Sheet
by nixik09 via cheatography.com/212204/cs/46107/

Data types in Java

Type Size (bits) Min Max Ex

byte 8 -2 -2 -1 byte b = 100;

short 16

int 32

long 64

float 32

double 64

char 16

boolean 1

Checked and unchecked exceptions and errors

Why "​(un​)ch​eck​ed"? Compiler can't anticipate logical errors that arise
only at runtime, can't check for those types of problems -->​"​unc​‐
hecked except​ion​s". Typically unchecked comes from logical
errors​/faulty logic that can occur anywhere.

Checked Exceptions

- Except​ional conditions that an app should anticipate and recover
from.

- E.g. FileNo​tFo​und​Exc​eption occurs when a method is
trying to read a file that does not exist

- Checked at compile time - should be stated in method signature if
throwing an exception. If exception could potent​ially be thrown in
code, must handle it too.

Does not inherit from Runtim​eEx​ception or Error? then its a
checked exception

Unchecked Exceptions

- Except​ional conditions that app cannot antici​pat​e/r​ecover from

- E.g. is NullPo​int​erE​xce​ption - when method is expecting
non-null value but receives null.

- Not checked at compile time. Not required to be in method sig, not
required to be handle it in code.

Is inherited from Runtim​eEx​ception? then its an unchecked
exception

Checked and unchecked exceptions and errors (cont)

Errors

E.g. OutOfM​emo​ryError - when app is trying to use more
memory than avail on system

- Not checked at compile time and not usually thrown from app code.

Switch statements

String direction = getDirection();
switch (direc​tion) {
 ​ ​ ​ case "​lef​t":
 ​ ​ ​ ​ ​ ​ ​ ​goL​eft();
 ​ ​ ​ ​ ​ ​ ​ ​break;
 ​ ​ ​ case "​rig​ht":
 ​ ​ ​ ​ ​ ​ ​ ​goR​ight();
 ​ ​ ​ ​ ​ ​ ​ ​break;
 ​ ​ ​ ​def​ault:
 ​ ​ ​ ​ ​ ​ ​ ​return "​unk​now​n";
}
// Java 14+
return switch (shirtNum) {
 ​ ​ ​ ​ case 1 -> "​goa​lie​";
 ​ ​ ​ ​ case 2 -> "left back";
 ​ ​ ​ ​ case 3, 4 -> "​centre back";
 ​ ​ ​ ​ case 6, 7, 8 -> "​mid​fie​lde​r";
 ​ ​ ​ ​ ​default -> throw new Illega​lAr​gum​‐
ent​Exc​ept​ion​("In​valid shirt number: " +
shirtNum);
}

- Default case optional, but largely good practice to include one

Streams

- represents sequence of elements and operating on those
elements. Not data structures but take input from collec​tions, arrays,
or I/O channels.

- key benefits: declar​ative, readable code; parallel operat​ions; builtin
operat​ions; less boiler​plate

By nixik09
cheatography.com/nixik09/

Not published yet.
Last updated 12th January, 2026.
Page 1 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

7 7

http://www.cheatography.com/
http://www.cheatography.com/nixik09/
http://www.cheatography.com/nixik09/cheat-sheets/java-refresher
http://www.cheatography.com/nixik09/
https://readable.com

Java refresher Cheat Sheet
by nixik09 via cheatography.com/212204/cs/46107/

Streams (cont)

Creating from a
collection

List<S​tri​ng> list = Arrays.as​Lis​t("a​ppl​e", "​ban​‐
ana​", "cherry");
Stream<String> stream​Fro​mList = list.s​tre​‐
am();

Creating a stream
from an array

String[] array = {"ap​ple​", "​ban​ana​", "cherry"};
Stream​<St​rin​g> stream​Fro​mArray = Arrays.st​‐
rea​m(a​rray);

Creating stream
using Stream.of

Stream​<St​rin​g> stream​OfE​lements =
Stream.of​("ap​ple​", "​ban​ana​", "​che​rry​");

Creating empty
stream

Stream​<St​rin​g> emptyS​tream = Stream.em​‐
pty();

Creating infinite
streams

Stream​<In​teg​er> infini​teS​tream = Stream.it​era​‐
te(0, n -> n + 1);

Primitive streams

mapToInt() vs map()
- map(St​rin​g::​length) returns a Stream​<In​teg​er>
(stream of Integer objects)
- mapToI​nt(​Str​ing​::l​ength) returns an IntStream
(stream of primitive ints)
Specia​lised primitive streams
- IntStream, LongStream, Double​Stream
These streams have additional operations not available on regular
streams:
- sum: intStr​eam.sum()
- average: intStr​eam.av​erage()
- statis​tics: intStr​eam.su​mma​ryS​tat​ist​ics()
Using primitive streams avoids boxing​/un​boxing overhead when
dealing with numeric operations

Another stream ex.

List<Person> people = Arrays.asList(
 ​ ​ ​ new Person​("Jo​hn", 25),
 ​ ​ ​ new Person​("Sa​rah​", 32),
 ​ ​ ​ new Person​("Mi​ke", 17),
 ​ ​ ​ new Person​("Em​ily​", 25)

Another stream ex. (cont)

>);
// Find names of adults, sorted alphab​eti​cally
List<S​tri​ng> adultNames = person.st​ream()
 ​ ​ ​ .fi​lte​r(p​erson -> person.ge​tAge() >= 18)
 ​ ​ ​ .ma​p(P​ers​on:​:ge​tName)
 ​ ​ ​ .so​rted()
 ​ ​ ​ .co​lle​ct(​Col​lec​tor​s.t​oLi​st());
System.ou​t.p​rin​tln​(ad​ult​Names); // [Emily, John, Sarah]
double averageAge = people.st​ream()
 ​ ​ ​ .ma​pTo​Int​(Pe​rso​n::​getAge)
 ​ ​ ​ .av​erage()
 ​ ​ ​ .or​Els​e(0.0);
System.ou​t.p​rin​tln​("Av​erage age: " + averag​eAge);

Method references

Syntax Equivalent Lambda Meaning

object​::i​nst​‐
anc​eMethod

x -> object.in​sta​nce​‐
Met​hod(x)

Use object as the target
for each call

Class:​:st​ati​‐
cMethod

x -> Class.s​ta​tic​Met​‐
hod(x)

Call a static method

Class:​:in​sta​‐
nce​Method

(obj, arg) -> obj.in​sta​‐
nce​Met​hod​(arg)

Useful in sorting or
grouping

Concur​rency: creating threads

// 1. by inheriting from Thread class
public class Exampl​eThread extends Thread {
 ​ ​ ​ ​@Ov​erride // note override! invoked when
thread starts
 ​ ​ ​ ​public void run() { // we do NOT call
RUN!!
 ​ ​ ​ ​ ​ ​ ​ // contains all the code to execute
when starting thread
 ​ ​ ​ ​ ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​(Th​rea​‐
d.c​urr​ent​Thr​ead​().g​et​Nam​e());
 ​ ​ ​ }
}
// start new thread..
public class Thread​Exa​mples {

By nixik09
cheatography.com/nixik09/

Not published yet.
Last updated 12th January, 2026.
Page 2 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nixik09/
http://www.cheatography.com/nixik09/cheat-sheets/java-refresher
http://www.cheatography.com/nixik09/
https://readable.com

Java refresher Cheat Sheet
by nixik09 via cheatography.com/212204/cs/46107/

Concur​rency: creating threads (cont)

> ​ ​ ​ ​public static void main(S​tring[] args) {
 ​ ​ ​ ​ ​ ​ ​ ​Exa​mpl​eThread thread = new Exampl​eTh​read();
 ​ ​ ​ ​ ​ ​ ​ ​thr​ead.st​art(); // only START to start new thread
 ​ ​ ​ }
}
// 2. implem​enting Runnable interface
public class Exampl​eRu​nnable implements Runnable {
 ​ ​ ​ ​@Ov​erride // note OVERRIDE!!
 ​ ​ ​ ​public void run() {
 ​ ​ ​ ​ ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​(Th​rea​d.c​urr​ent​Thr​ead​().g​et​Nam​e());
 ​ ​ ​ }
}
public class Thread​Exa​mples {
 ​ ​ ​ ​public static void main(S​tring[] args) {
 ​ ​ ​ ​ ​ ​ ​ ​Exa​mpl​eRu​nnable runnable = new Exampl​eRu​nna​ble();
 ​ ​ ​ ​ ​ ​ ​ ​Thread thread = new Thread​(ru​nna​ble);
 ​ ​ ​ ​ ​ ​ ​ ​thr​ead.st​art();
 ​ ​ ​ }
}
// 3. Anon declar​ations
public class Main {
 ​ ​ ​ ​public static void main(S​tring[] args) {
 ​ ​ ​ ​ ​ ​ ​ ​Thread thread = new Thread(() -> {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​(Th​rea​d.c​urr​ent​Thr​ead​().g​et​Nam​e());
 ​ ​ ​ ​ ​ ​ ​ });
 ​ ​ ​ ​ ​ ​ ​ ​thr​ead.st​art();
 ​ ​ ​ }
}

Both 1) and 2) work exactly the same with no diff in perfor​mance.
BUT, Runnable interfaces leaves option of extending class with
some other class since you can inherit only one class in Java. Also,
easier to create a thread pool using runnables.

Throwing and handling exceptions

/**
Throwing a checked exception

*/
public class Insuff​ici​ent​Bal​anc​eEx​ception
extends Exception {}
public class BankAc​count {
 ​ ​ ​ ​public void withdr​aw(​double amount)
throws Insuff​ici​ent​Bal​anc​eEx​ception {
 ​ ​ ​ ​ ​ ​ ​ if (balance < amount) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​throw new Insuff​ici​ent​‐
Bal​anc​eEx​cep​tion();
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
/**
Throwing an unchecked exception

*/
public class BankAc​count {
 ​ ​ ​ ​public void withdr​aw(​double amount) {
 ​ ​ ​ ​ ​ ​ ​ if (amount < 0) {
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​throw new Illega​lAr​gum​‐
ent​Exc​ept​ion​("Cannot withdraw a negative
amount​");
 ​ ​ ​ ​ ​ ​ ​ }
 ​ ​ ​ }
}
/**
try, catch and finally

*/
try {
 ​ ​ ​ ​ban​kAc​cou​nt.w​it​hdr​aw(​amo​unt);
} catch (Insuf​fic​ien​tBa​lan​ceE​xce​ption) {
 ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​("Wi​thd​rawal
failed: insuff​icient balanc​e");
} catch (Runti​meE​xce​ption e) {
 ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​("Wi​thd​rawal
failed: " + e.getM​ess​age());
} finally {
 ​ ​ ​ ​Sys​tem.ou​t.p​rin​tln​("Cu​rrent balance:
" + bankAc​cou​nt.g​et​Bal​anc​e());
}

By nixik09
cheatography.com/nixik09/

Not published yet.
Last updated 12th January, 2026.
Page 3 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nixik09/
http://www.cheatography.com/nixik09/cheat-sheets/java-refresher
http://www.cheatography.com/nixik09/
https://readable.com

Java refresher Cheat Sheet
by nixik09 via cheatography.com/212204/cs/46107/

Java Maps

dictionary DS - HashMap, TreeMap

Map<St​ring, Intege​r> fruitP​rices = new HashMa​p<>();

Add entries fruitP​ric​es.p​ut​("ap​ple​", 100);

Get value for a key fruitP​ric​es.g​et​("ap​ple​");

Check if map contains
specific key

fruitP​ric​es.c​on​tai​nsK​ey(​"​app​le"); // =>
true

Remove entries fruitP​ric​es.r​em​ove​("pl​um");

Get size fruitP​ric​es.s​ize();

Get all keys in map fruitP​ric​es.k​ey​Set(); // returns keys in a
set

Get all values in map fruitP​ric​es.v​al​ues(); // returns values in
a collection

Stream interm​ediate operations

List<String> fruits = Arrays.asList("apple",
"banana", "cherry", "date");
// filter - keeps elements that match a predicate
Stream​<St​rin​g> longFruits = fruits.st​ream()
 ​ ​ ​ .fi​lte​r(fruit -> fruit.l​en​gth() > 5);
// map - transforms each element
Stream​<St​rin​g> fruitL​engths = fruits.st​ream()
 ​ ​ ​ .ma​p(S​tri​ng:​:le​ngth);
// sorted - sorts elements
Stream​<St​rin​g> sorted​Fruits = fruits.st​ream()
 ​ ​ ​ .so​rted();
// distinct - removes duplicates
Stream​<St​rin​g> unique​Fruits = fruits.st​ream()
 ​ ​ ​ .di​sti​nct();
// limit - reduces stream size
Stream​<St​rin​g> limite​dFruits = fruits.st​ream()
 ​ ​ ​ .li​mit(2);
// skip - skips elements
Stream​<St​rin​g> skippe​dFruits = fruits.st​ream()
 ​ ​ ​ .sk​ip(1);

- These return a new stream and are lazy for perfor​mance reasons
- Allows JVM to optimise entire operation chain at once
- For ex., if you filter 1000 elements and then limit to 5, Java can
stop processing after finding 5 elements that match the filter (rather
than filtering all 1000 first).

Stream terminal operations

List<String> fruits = Arrays.asList("apple",
"banana", "cherry");
// forEach - performs actions on each element
fruits.st​rea​m().fo​rEa​ch(​Sys​tem.ou​t::​pri​‐
ntln);
// collect - puts each element into a collection
List<S​tri​ng> fruitList = fruits.st​ream()
 ​ ​ ​ .fi​lte​r(fruit -> fruit.l​en​gth() > 5)
 ​ ​ ​ .co​lle​ct(​Col​lec​tor​s.t​oLi​st());
// reduce - reduces stream to single value
Option​al<​Str​ing> combined = fruits.st​ream()
 ​ ​ ​ .re​duc​e((a, b) -> a + ", " + b);
// count - returns number of elements
long count = fruits.st​rea​m().co​unt();
// anyMat​ch/​all​Mat​ch/​non​eMatch - check
predicates
boolean anyLong = fruits.st​ream()
 ​ ​ ​ .an​yMa​tch​(fruit -> fruit.l​en​gth() >
5);
boolean allLong = fruits.st​ream()
 ​ ​ ​ .al​lMa​tch​(fruit -> fruit.l​en​gth() >
3);
boolean noneLong = fruits.st​ream()
 ​ ​ ​ .no​neM​atc​h(fruit -> fruit.l​en​gth() >
10);
// findFi​rst​/fi​ndAny - find elements
Option​al<​Str​ing> first = fruits.st​rea​m().fi​‐
ndF​irst();

- These are terminal - they don't return a stream but return a
concrete result or side-e​ffect (e.g. collec​tion, primitive or object).
- They trigger the actual processing of stream elements - note above
collect() returning a collec​tion, count() returning a long, reduce()
returning an Option​al/​spe​cific value or forEach() returning void
(producing side effects).
- average() - operation on IntStream - returns Option​alD​ouble

By nixik09
cheatography.com/nixik09/

Not published yet.
Last updated 12th January, 2026.
Page 4 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nixik09/
http://www.cheatography.com/nixik09/cheat-sheets/java-refresher
http://www.cheatography.com/nixik09/
https://readable.com

Java refresher Cheat Sheet
by nixik09 via cheatography.com/212204/cs/46107/

Method references code samples

- String::length and x::equals - not static methods; equals() and length() are
both instance methods.
- The shorthand forms are method refere​nces, equivalent to x -> operat​‐
ion.eq​uals(x) or x->​x.l​ength.
//object​::i​nst​anc​eMethod
String prefix = "​Hel​lo";
List<S​tri​ng> words = List.o​f("H​ell​o", "​Hi", "​Hey​");
boolean allMatch = words.s​tr​eam()
 .allMa​tch​(pr​efi​x::​equ​als); // same: x -> prefix.eq​uals(x)
//Class:​:st​ati​cMethod
// Use for static utility methods, like from Math or Integer
List<S​tri​ng> numbers = List.o​f("1​", "​2", "​3");
List<I​nte​ger> ints = number​s.s​tream()
 .map(I​nte​ger​::p​ars​eInt) // same as: x -> Intege​r.p​ars​eInt(x)
 .toList();
List<D​oub​le> values = List.o​f(9.0, 16.0, 25.0);
List<D​oub​le> roots = values.st​ream()
 .map(M​ath​::sqrt) // same as: x -> Math.s​qrt(x)
 .toList();
//Class:​:in​sta​nce​Method
List<S​tri​ng> items = List.o​f("H​ell​o", "​Hi", "​Hey​");
List<S​tri​ng> lower = items.s​tr​eam()
 .map(S​tri​ng:​:to​Upp​erCase) // same as: x -> s -> s.toUp​per​Case()
 .toList();
List<S​tri​ng> nonEmpty = items.s​tr​eam()
 .filter(s -> !s.isE​mpt​y()); // classic
// or
List<S​tri​ng> nonEmpty2 = items.s​tr​eam()
 ​ ​ ​ .fi​lte​r(P​red​ica​te.n​ot​(St​rin​g::​isE​mpty)) // java 11+
 ​ ​ ​ .to​List();
//Constr​uctor references - ClassN​ame​::new
List<S​tri​ng> list = Stream.of​("a", "​b", "​c")
 .colle​ct(​Col​lec​tor​s.t​oCo​lle​cti​on(​Arr​ayL​ist​::n​ew)); // creates
 new ArrayList

Method references code samples (cont)

> //Sorting with method references
List<S​tri​ng> names = List.o​f("Z​oe", "​Amy​", "​Joh​n");
List<S​tri​ng> sorted = names.s​tr​eam()
 .sorte​d(S​tri​ng:​:co​mpa​reT​oIg​nor​eCase) // same as (a, b) -> a.comp​are​ToI​g
no​reC​ase(b)
 .toList();

Concur​rency terms

Concept Analogy Java Tool

Thread A separate worker Thread, Runnable,
Callable

Race
condition

Two people grabbing
same sandwich

synchr​onized, locks,
Atomic*

Thread pool Team of workers
managed by boss

Execut​orS​ervice

Results from
a thread

Waiter bringing back
your order

Future, Callable

Thread​-safe
collec​tions

 Concur​ren​tHa​shMap,
CopyOn​Wri​teA​rra​yList

Concur​rency: tasks appear to run at the same time, but may take
turns sharing resources

Parall​elism: Tasks actually run at the same time on different cores

By nixik09
cheatography.com/nixik09/

Not published yet.
Last updated 12th January, 2026.
Page 5 of 5.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nixik09/
http://www.cheatography.com/nixik09/cheat-sheets/java-refresher
http://www.cheatography.com/nixik09/
https://readable.com

	Java refresher Cheat Sheet - Page 1
	Data types in Java
	Switch statements
	Checked and unchecked exceptions and errors
	Streams

	Java refresher Cheat Sheet - Page 2
	Method references
	Primitive streams
	Concur­rency: creating threads
	Another stream ex.

	Java refresher Cheat Sheet - Page 3
	Throwing and handling exceptions

	Java refresher Cheat Sheet - Page 4
	Java Maps
	Stream terminal operations
	Stream interm­ediate operations

	Java refresher Cheat Sheet - Page 5
	Method references code samples
	Concur­rency terms

