Cheatography

Programming Interview Live Coding Cheat Sheet by nirintsoa via cheatography.com/194635/cs/40859/

Data Structures			
Array	An array is a data structure that collects elements of the same data type and stores them in contiguous memory locations.		
String	A string (or string literal) is an array of characters (i.e. any combination of numbers, letters, symbols).		
Linked List	A Linked List is a user-defined data structure that consists of nodes that point to either in one direction (singly Linked List) or both directions (doubly Linked List).		
Linear Data Structures			
Stack	The linear data structure stores		

Linked	A Linked List is a user-defined	
List	data structure that consists of	
	nodes that point to either in one	
	direction (singly Linked List) or	
	both directions (doubly Linked	
	List).	

Stack	The linear data structure stores the data elements in the LIFO or the 'last-in/ first out' order.
Queue	The queue is a linear data structure that follows the FIFO order. FIFO stands for First In and First Out.
Linked List	The last node of a data structure will be linked to the first node of the next data structure.

Non-Linear Data Structures

Tree	Tree data structures are hierar- chic. The tree data structure collects the nodes together to depict and stimulate the sequence. Tree data structure does not store the data sequentially. It stores the data on multiple levels.
Graph	In Graph Data Structure, one node is simply connected to the other node through the edge of the graph. The Graph Data Structure obviously uses Non-linear data structures which are not sequen- tially arranged.

By nirintsoa cheatography.com/nirintsoa/

A	goi	rit	hm	
	\sim \sim			

Recursion	While technically not an algorithm, recursion is an algorithm technique used to help break down an algorithm into a base case and recursive cases. While these algorithms can also be implemented using loops, they tend to be more
	readable.
Sorting and searching	Sorting and searching are two fundamental operations that are performed on most data structures. Sorting serves to order elements in a particular way, while searching deals with finding the desired element in a particular data structure.

Sorting Algorithms			
Algorithm	Time complexity	Space complexity	
Selection sort	O(n²)	O(1)	
Insertion sort	O(n²)	O(1)	
Counting sort	O(n + k)	O(k)	
Quicksort	O(nlogn)	O(logn)	
Mergesort	O(nlogn)	O(n)	

Searching Algorithms			
Algorithm	Time complexity	Space complexity	
Linear Search	O(n)	O(1)	
Binary Search	O(logn)	O(1) iterative- O(logn) recursive	
AVL Binary Search Tree	O(logn)	O(n)	

Searching Algorithms (cont)

BFS	O(V + E), where V is the	O(V)
and	number of vertices and E is	
DFS	the number of edges	

Stack Methods push Adds a new element at the top of the stack Removes an element at the top of рор the stack

Queue Methods		
insert	Inserts an element at the end of the queue	
delete	Removes an element at the top of the queue	
toa	Gets the time required to retrieve an element in the queue	

Binary Tree in Array (1-based)		
Item	Index	
root	1	
left child	2n	
right child	2n+1	
parent	n/2	

Binary Tree in Array (0-based)			
Item	Index		
root	0		
left child	2r+1		
right child	2r+2		
parent	(r-1)/2		

Published 16th October, 2023. Last updated 16th October, 2023. Page 1 of 1.

Sponsored by Readable.com Measure your website readability! https://readable.com