
python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

re.match()

re.match(pattern, "spamspamspam")

#returns True

match returns an object repres enting the match, if not,
it returns None.

Sub()

re.sub(pattern, repl, string, count=0)

str = "My name is David. Hi David."
pattern = r"Da vid "
newstr = re.sub (pa ttern, " Amy ", str)
print(newstr)
>>>

My name is Amy. Hi Amy.

>>>

This method replaces all occurr ences of the pattern in
string with repl, substi tuting all occurr ences, unless
count provided. This method returns the modified
string.

^start &end

pattern = r"^gr.y$"

The next two metach ara cters are ^ and $.
These match the start and end of a string, respec tively.

[] character classes 3

pattern = r"[^ A-Z]"
if re.sea rch (pa ttern, "this is all
quiet"):

 pri nt(" Match 1")
if re.sea rch (pa ttern, " AbC dEf G12 3"):
 pri nt(" Match 2")
if re.sea rch (pa ttern, " THI SIS ALL SHO UTI ‐
NG"):

 pri nt(" Match 3")
##The pattern [^A-Z] excludes uppercase

strings.

Note, that the ^ should be inside the

brackets to invert the character class.

>>>

Match 1

Match 2

>>>

? metach aracter

pattern = r"ic e(-)?c rea m"
if re.mat ch(pat tern, " ‐
ice -cr eam "):
 pri nt(" Match 1")
if re.mat ch(pat tern, " ‐
ice cre am"):
 pri nt(" Match 2")

The metach aracter ? means "zero
or one repeti tio ns".

{} metach ara cters

pattern = r"9{1,3}$"

if re.mat ch(pat tern, " 9"):
 pri nt(" Match 1")
if re.mat ch(pat tern, " ‐
999 "):
 pri nt(" Match 2")
if re.mat ch(pat tern, " ‐
999 9"):
 pri nt(" Match 3")
>>>

Match 1

Match 2

>>>

Curly braces can be used to
represent the number of repeti tions
between two numbers.
The regex {x,y} means " between x
and y repeti tions of someth ing ".
Hence {0,1} is the same thing as ?.
If the first number is missing, it is
taken to be zero. If the second
number is missing, it is taken to be
infinity.

special sequences

special sequences (cont)

 print ("Match 3")
>>>

Match 1

Match 2

>>>

Note, that "(.+) \1" is not the same as "(.+) (.+)", because

\1 refers to the first group's subexp res sion, which is the
matched expression itself, and not the regex pattern.

There are various special sequences you can use in regular expres sions. They
are written as a backslash followed by another character.
One useful special sequence is a backslash and a number between 1 and 99,
e.g., \1 or \17. This matches the expression of the group of that number.

search() and findall()

if re.search(pattern, "eggspamsausagespam"):

 pri nt(" Mat ch")
else:

 pri nt("No match")

print(re.f in dal l(p attern, " egg spa msa usa ges pam "))
>>>

Match

['spam', 'spam']

>>>

The function re.search finds a match of a pattern anywhere in the string.
The function re.findall returns a list of all substrings that match a pattern.

. (dot).

pattern = r"gr.y"

this will be grey or gray or anything else except newline

This matches any character, other than a new line.

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression

pattern = r"(.+) \1"

match = re.mat ch(pat tern,
"word word")

if match:

 print ("Match 1")
match = re.mat ch(pat tern,
"?! ?!")

if match:

 print ("Match 2")
match = re.mat ch(pat tern,
"abc cde")

if match:

By Nima (nimakarimian)
cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 1 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

[] character classes 2

pattern = r"[A -Z] [A- Z][0-9]"
if re.sea rch (pa ttern, " LS8 "):
 pri nt(" Match 1")
if re.sea rch (pa ttern, " E3"):
 pri nt(" Match 2")
#The pattern in the example above

matches strings that contain two

alphabetic uppercase letters

followed by a digit.

>>>

Match 1

>>>

Character classes can also match ranges of
charac ters.
The class [a-z] matches any lowercase
alphabetic character.
The class [G-P] matches any uppercase
character from G to P.
The class [0-9] matches any digit.
Multiple ranges can be included in one class. For
example, [A-Za-z] matches a letter of any cases.

+ metach aracter

pattern = r"g+ "
if re.mat ch(pat tern, " g"):
 pri nt(" Match 1")
To summarize:

* matches 0 or more occurr ences of
the preceding expres sion.
+ matches 1 or more occurrence of

the preceding expres sion.

The metach aracter + is very similar to *, except it
means "one or more repeti tio ns", as opposed to
"zero or more repeti tio ns".

Groups in metach ara cters ()

pattern = r"a(bc)(de)(f(g)h)i"

match = re.mat ch(pat tern, " abc def ‐
ghi jkl mno p")
if match:

 pri nt(mat ch.g ro up())
 pri nt(mat ch.g ro up(0))

Groups in metach ara cters () (cont)

 pri nt(mat ch.g ro up(1))
 pri nt(mat ch.g ro up(2))
 pri nt(mat ch.g ro ups())
>>>

abcdefghi

abcdefghi

bc

de

('bc', 'de', 'fgh', 'g')

>>>

The content of groups in a match can be accessed
using the group function.
A call of group(0) or group() returns the whole match.
A call of group(n), where n is greater than 0, returns
the nth group from the left.
The method groups() returns all groups up from 1.

\d \s \w Special sequences

pattern = r"(\D+\d)"

match = re.mat ch(pat tern, "Hi 999!")
if match:

 pri nt(" Match 1")
match = re.mat ch(pat tern, "1, 23, 456!")
if match:

 pri nt(" Match 2")
match = re.mat ch(pat tern, " ! $?")
if match:

 pri nt(" Match 3")
>>>

Match 1

>>>

More useful special sequences are \d, \s, and \w.
These match digits, whites pace, and word characters
respec tively.
In ASCII mode they are equivalent to [0-9], [\t\n\r \f\v],
and [a-zA- Z0-9_].
In Unicode mode they match certain other charac ters,
as well. For instance, \w matches letters with accents.
Versions of these special sequences with upper case
letters - \D, \S, and \W - mean the opposite to the
lower-case versions. For instance, \D matches
anything that isn't a digit.

Search ->> Group, Start, End ,Span

match = re.search(pattern, "eggspamsausage")

if match:

 pri nt(mat ch.g ro up())
 pri nt(mat ch.s ta rt())
 pri nt(mat ch.e nd())
 pri nt(mat ch.s pan())
>>>

pam

4

7

(4, 7)

>>>

The regex search returns an object with several methods that give
details about it.
These methods include group which returns the string matched,
start and end which return the start and ending positions of the first
match, and span which returns the start and end positions of the first
match as a tuple.

[] character classes

pattern = r"[aeiou]"

if re.sea rch (pa ttern, " gre y"):
 pri nt(" Match 1")
if re.sea rch (pa ttern, " qwe rty uio p"):
 pri nt(" Match 2")
if re.sea rch (pa ttern, " rhythm myths"):
 pri nt(" Match 3")
#The pattern [aeiou] in the search function

matches all strings that contain any one of the

characters defined

>>>

Match 1

Match 2

>>>

Character classes provide a way to match only one of a specific set
of charac ters.

By Nima (nimakarimian)
cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 2 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

* metach aracter

pattern = r"eg g(s pam)*"
if re.mat ch(pat tern, " egg "):
 pri nt(" Match 1")
if re.mat ch(pat tern, " egg spa msp ame gg"):
 pri nt(" Match 2")
if re.mat ch(pat tern, " spa m"):
 pri nt(" Match 3")
>>>

match 1

match 2

>>>

The example above matches strings that start with " egg " and follow with
zero or more " spa m"s.
..

The metach aracter * means "zero or more repeti tions of the previous thing".

named groups & noncap turing groups

pattern = r"(?P<first>abc)(?:def)(ghi)"

match = re.mat ch(pat tern, " abc def ghi ")
if match:

 pri nt(mat ch.g ro up(" fir st"))
 pri nt(mat ch.g ro ups())
>>>

abc

('abc', 'ghi')

>>>

Named groups have the format (?P<na me>...), where name is the name of the group, and ... is
the content. They behave exactly the same as normal groups, except they can be accessed by
group(name) in addition to its number.
Non-ca pturing groups have the format (?:...). They are not accessible by the group method, so
they can be added to an existing regular expression without breaking the numbering.

| " or" metach aracter

pattern = r"gr (a| e)y "
match = re.mat ch(pat tern, " gra y")
if match:

 print ("Match 1")
match = re.mat ch(pat tern, " gre y")
if match:

 print ("Match 2")
match = re.mat ch(pat tern, " gri y")
if match:

 print ("Match 3")
>>>

Match 1

Match 2

>>>

Another important metach aracter is |.
This means " or", so red|blue matches either " red " or " blu e".

\A \Z \b special sequences

pattern = r"\b (ca t) \b"
match = re.sea rch (pa ttern, "The cat sat!")
if match:

 print ("Match 1")
match = re.sea rch (pa ttern, "We s>c at< ter ed? ")
if match:

 print ("Match 2")
match = re.sea rch (pa ttern, "We scatte red.")
if match:

 print ("Match 3")
>>>

Match 1

Match 2

>>>

" \b(cat)\b " basically matches the word " cat " surrounded
by word bounda ries.

Additional special sequences are \A, \Z, and \b.
The sequences \A and \Z match the beginning and end of a string, respec ‐
tively.
The sequence \b matches the empty string between \w and \W charac ters, or
\w characters and the beginning or end of the string. Inform ally, it represents
the boundary between words.
The sequence \B matches the empty string anywhere else.

By Nima (nimakarimian)
cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 3 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

	python regex(regular expression) Cheat Sheet - Page 1
	re.match()
	? metacharacter
	Sub()
	{} metacharacters
	search() and findall()
	^start &end
	[] character classes 3
	. (dot).
	special sequences

	python regex(regular expression) Cheat Sheet - Page 2
	[] character classes 2
	Search->>Group, Start,End,Span
	\d \s \w Special sequences
	[] character classes
	+ metacharacter
	Groups in metacharacters ()

	python regex(regular expression) Cheat Sheet - Page 3
	* metacharacter
	| "or" metacharacter
	named groups & noncapturing groups
	\A \Z \b special sequences

