python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

"spamspamspam")

re.match (pattern,

#ireturns True

match returns an object representing the match, if not,
it returns None.

re.sub (pattern,

repl, string, count=0)

str = "My name is David. Hi David."
pattern = r"David"
newstr = re.sub(pattern, "Amy", str)
print (newstr)

>>>

My name is Amy. Hi Amy.

>>>

This method replaces all occurrences of the pattern in
string with repl, substituting all occurrences, unless
count provided. This method returns the modified
string.

pattern = r"Agr.y$"

The next two metacharacters are * and $.
These match the start and end of a string, respectively.

pattern = r"[AA-Z]"

if re.search(pattern, "this is all
quiet") :

print ("Match 1")

if re.search(pattern, "AbCdEfG123"):
print ("Match 2")
if re.search(pattern, "THISISALLSHOUTI-

NG") :
print ("Match 3")

##The pattern [AA-Z] excludes uppercase
strings.
Note, that the A should be inside the

brackets to invert the character class.
>>>

Match 1

Match 2

>>>

pattern = r"ice(-)?cream"

if re.match(pattern, "-
ice-cream") :

print ("Match 1")
if re.match(pattern, "-
icecream") :

print ("Match 2")

print ("Match 3")
>>>
Match 1
Match 2
>>>
Note, that "(.+) \1" is not the same

\1l refers to the first group's subex

matched expression itself, and not t

The metacharacter ? means "zero

or one repetitions".

There are various special sequences you can usi
are written as a backslash followed by another ct
One useful special sequence is a backslash and

— e.g., \1 or\17. This matches the expression of the

pattern = r"9{1,3}¢"
if re.match(pattern,
print ("Match 1")
if re.match(pattern, "-
999") :
print ("Match 2")

if re.match(pattern, "-

if re.search(pattern, "eggspamsausag
print ("Match")
else:

print ("No match")

9999") : print (re.findall (pattern, "eggspamsa
print ("Match 3") >>>

>>> Match

Match 1 ['spam', 'spam']

Match 2 >>>

>>>

The function re.search finds a match of a pattern

The function re.findall returns a list of all substrin

pattern = r'"gr.y"

Curly braces can be used to

represent the number of repetitions
between two numbers.
The regex {x,y} means "between x

and y repetitions of something". # this will be grey or gray or anyth

Hence {0,1} is the same thing as ?.

If the first number is missing, it is This matches any character, other than a new lin

taken to be zero. If the second
number is missing, it is taken to be
infinity.

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression

By Nima (nimakarimian)
cheatography.com/nimakarimian/

www.nimakarimian.ir

pattern = r"(.+) \1"
match = re.match(pattern,
"word word")
if match:

print ("Match 1")
match = re.match(pattern,
0§ PL0Y
if match:

print ("Match 2")
match = re.match(pattern,
"abc cde")

if match:

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 1 of 4.

Sponsored by ApolloF
Everyone has a novel i
https://apollopad.com

http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

Cheatography

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

pattern = r"[A-Z] [A-Z] [0-9]"

if re.search(pattern, "LS8"):
print ("Match 1")

if re.search(pattern, "E3"):
print ("Match 2")

#The pattern in the example above

matches strings that contain two

alphabetic uppercase letters

followed by a digit.

>>>

Match 1

>>>

Character classes can also match ranges of
characters.

The class [a-z] matches any lowercase
alphabetic character.

The class [G-P] matches any uppercase
character from G to P.

The class [0-9] matches any digit.

Multiple ranges can be included in one class. For
example, [A-Za-z] matches a letter of any cases.

pattern = r"g+"

if re.match(pattern, "g"):
print ("Match 1")
To summarize:
* matches 0 or more occurrences of
the preceding expression.
+ matches 1 or more occurrence of

the preceding expression.

The metacharacter + is very similar to *, except it
means "one or more repetitions"”, as opposed to
"zero or more repetitions".

pattern = r"a(bc) (de) (f(g)h)i"

match = re.match(pattern, "abcdef-
ghijklmnop")
if match:

print (match.group())

print (match.group (0))

By Nima (nimakarimian)
cheatography.com/nimakarimian/

www.nimakarimian.ir

print (match.group (1))
print (match.group(2))
print (match.groups ())

>>>

abcdefghi

abcdefghi

bc

de

('bc', 'de',

Ifghl, |g|)

>>>

The content of groups in a match can be accessed
using the group function.

A call of group(0) or group() returns the whole match.
A call of group(n), where n is greater than 0, returns
the nth group from the left.

The method groups() returns all groups up from 1.

match = re.search(pattern,
if match:
print (match.group())
print (match.start())
print (match.end())

print (match.span())

(4, 7)

>>>

pattern = r" (\D+\d)"

match = re.match(pattern, "Hi 999!")
if match:
print ("Match 1")
match = re.match(pattern, "1, 23, 456!")
if match:
print ("Match 2")
match = re.match(pattern, " ! §$?2")
if match:

print ("Match 3")
>>>
Match 1

>>>

The regex search returns an object
details about it.

These methods include group whicl
start and end which return the start
match, and span which returns the :
match as a tuple.

More useful special sequences are \d, \s, and \w.
These match digits, whitespace, and word characters
respectively.

In ASCII mode they are equivalent to [0-9], [\t\n\r\fiv],
and [a-zA-Z0-9_].

In Unicode mode they match certain other characters,
as well. For instance, \w matches letters with accents.
Versions of these special sequences with upper case
letters - \D, \S, and \W - mean the opposite to the
lower-case versions. For instance, \D matches
anything that isn't a digit.

pattern = r"[aeioul"

if re.search(pattern, "gre
print ("Match 1")

if re.search(pattern, "gwe
print ("Match 2")

if re.search(pattern, "rhy
print ("Match 3")

#The pattern [aeiou] in th

matches all strings that c
characters defined

>>>

Match 1

Match 2

>>>

Character classes provide a way to
of characters.

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 2 of 4.

Sponsored by ApolloF
Everyone has a novel i
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

pattern = r"egg (spam) *"

if re.match(pattern, "egg"):
print ("Match 1")

if re.match(pattern, "eggspamspamegg") :
print ("Match 2")

if re.match(pattern, "spam"):

print ("Match 3")
>>>
match 1
match 2

>>>

The example above matches strings that start with "egg" and follow with

zero or more "spam"s.

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

pattern = r"gr(ale)y"

match = re.match(pattern,
if match:

print ("Match 1")
match = re.match(pattern,
if match:

print ("Match 2")
match = re.match(pattern,
if match:

print ("Match 3")

>>>
Match 1
Match 2
>>>

||gray||)

" greyll)

||griy||)

The metacharacter * means "zero or more repetitions of the previous thing".

pattern = r" (?P<first>abc) (?:def) (ghi)"
match = re.match(pattern, "abcdefghi")
if match:

print (match.group ("first"))

print (match.groups ())
>>>
abc
(tabc', 'ghi')

>>>

Named groups have the format (?P<name>...), where name is the name of the group, and ... is
the content. They behave exactly the same as normal groups, except they can be accessed by
group(name) in addition to its number.

Non-capturing groups have the format (?:...). They are not accessible by the group method, so
they can be added to an existing regular expression without breaking the numbering.

By Nima (nimakarimian) Published 21st July, 2020.
Last updated 21st July, 2020.

Page 3 of 4.

cheatography.com/nimakarimian/
www.nimakarimian.ir

Another important metacharacter is |.

This means "or", so red|blue matches either "|

pattern = r"\b(cat) \b"

match = re.search(pattern,
if match:
print ("Match 1")
match = re.search (pattern,
if match:
print ("Match 2")
match = re.search(pattern,
if match:
print ("Match 3")
>>>
Match 1
Match 2
>>>

"The ce

"We s>¢

"We sce

"\b (cat) \b" basically matches the

by word boundaries.

Additional special sequences are \A, \Z, and \

The sequences \A and \Z match the beginning

tively.

The sequence \b matches the empty string be

\w characters and the beginning or end of the

the boundary between words.

The sequence \B matches the empty string ar

Sponsored by ApolloF
Everyone has a novel i

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://apollopad.com

	python regex(regular expression) Cheat Sheet - Page 1
	re.match()
	? metach­aracter
	Sub()
	{} metach­ara­cters
	search() and findall()
	^start &end
	[] character classes 3
	. (dot).
	special sequences

	python regex(regular expression) Cheat Sheet - Page 2
	[] character classes 2
	Search­->>­Group, Start,­End­,Span
	\d \s \w Special sequences
	[] character classes
	+ metach­aracter
	Groups in metach­ara­cters ()

	python regex(regular expression) Cheat Sheet - Page 3
	* metach­aracter
	| "­or" metach­aracter
	named groups & noncap­turing groups
	\A \Z \b special sequences

