
python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

re.match()re.match()

re.match(pattern,
"spamspamspam")
#returns True

match returns an object representing the
match, if not, it returns None.

Sub()Sub()

re.sub(pattern, repl, string,
count=0)
str = "My name is David. Hi
David."
pattern = r"David"
newstr = re.sub(pattern, "‐
Amy", str)
print(newstr)
>>>
My name is Amy. Hi Amy.
>>>

This method replaces all occurrences of the
pattern in string with repl, substituting all
occurrences, unless count provided. This
method returns the modified string.

^start ^start &end&end

pattern = r"^gr.y$"

The next two metacharacters are ^ and $.
These match the start and end of a string,
respectively.

[] character classes 3[] character classes 3

pattern = r"[^A-Z]"
if re.search(pattern, "this
is all quiet"):
 print("Match 1")
if re.search(pattern, "AbC‐
dEfG123"):
 print("Match 2")
if re.search(pattern, "THI‐
SISALLSHOUTING"):
 print("Match 3")
##The pattern [^A-Z] excludes
uppercase strings.
Note, that the ^ should be
inside the brackets to invert
the character class.
>>>
Match 1
Match 2
>>>

special sequencesspecial sequences

pattern = r"(.+) \1"
match = re.match(pattern,
"word word")
if match:
 print ("Match 1")
match = re.match(pattern, "?!
?!")
if match:
 print ("Match 2")
match = re.match(pattern,
"abc cde")
if match:
 print ("Match 3")
>>>
Match 1

special sequences (cont)special sequences (cont)

> Match 2
>>>
Note, that "(.+) \1" is not the same as "(.+)
(.+)", because \1 refers to the first group's
subexpression, which is the matched
expression itself, and not the regex pattern.

There are various special sequences you
can use in regular expressions. They are
written as a backslash followed by another
character.
One useful special sequence is a backslash
and a number between 1 and 99, e.g., \1 or
\17. This matches the expression of the
group of that number.

? metacharacter? metacharacter

pattern = r"ice(-)?cream"
if re.match(pattern, "ice-
cream"):
 print("Match 1")
if re.match(pattern, "ice‐
cream"):
 print("Match 2")

The metacharacter ? means "zero or one
repetitions".

{} metacharacters{} metacharacters

pattern = r"9{1,3}$"
if re.match(pattern, "9"):
 print("Match 1")
if re.match(pattern, "‐
999"):
 print("Match 2")

By NimaNima (nimakarimian)

cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 1 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

{} metacharacters (cont){} metacharacters (cont)

> if re.match(pattern, "9999"):
 print("Match 3")
>>>
Match 1
Match 2
>>>

Curly braces can be used to represent the
number of repetitions between two
numbers.
The regex {x,y} means "between x and y
repetitions of something".
Hence {0,1} is the same thing as ?.
If the first number is missing, it is taken to
be zero. If the second number is missing, it
is taken to be infinity.

search() and findall()search() and findall()

if re.search(pattern,
"eggspamsausagespam"):
 print("Match")
else:
 print("No match")

print(re.findall(pattern,
"eggspamsausagespam"))
>>>
Match
['spam', 'spam']
>>>

The function re.search finds a match of a
pattern anywhere in the string.
The function re.findall returns a list of all
substrings that match a pattern.

. (dot).. (dot).

pattern = r"gr.y"
this will be grey or gray or
anything else except newline

This matches any character, other than a
new line.

\d \s \w \d \s \w Special sequencesSpecial sequences

pattern = r"(\D+\d)"
match = re.match(pattern, "Hi
999!")
if match:
 print("Match 1")
match = re.match(pattern, "1,
23, 456!")
if match:
 print("Match 2")
match = re.match(pattern, " !
$?")
if match:
 print("Match 3")
>>>
Match 1
>>>

More useful special sequences are \d, \s,
and \w.
These match digits, whitespace, and word
characters respectively.
In ASCII mode they are equivalent to [0-9], [
\t\n\r\f\v], and [a-zA-Z0-9_].
In Unicode mode they match certain other
characters, as well. For instance, \w
matches letters with accents.
Versions of these special sequences with
upper case letters - \D, \S, and \W - mean
the opposite to the lower-case versions. For
instance, \D matches anything that isn't a
digit.

[] character classes 2[] character classes 2

pattern = r"[A-Z][A-Z][0-
9]"
if re.search(pattern, "‐
LS8"):
 print("Match 1")
if re.search(pattern, "E3"):
 print("Match 2")
#The pattern in the example
above matches strings that
contain two alphabetic uppercase
letters followed by a digit.
>>>
Match 1
>>>

Character classes can also match ranges of
characters.
The class [a-z] matches any lowercase
alphabetic character.
The class [G-P] matches any uppercase
character from G to P.
The class [0-9] matches any digit.
Multiple ranges can be included in one
class. For example, [A-Za-z] matches a
letter of any cases.

+ metacharacter+ metacharacter

pattern = r"g+"
if re.match(pattern, "g"):
 print("Match 1")
To summarize:
* matches 0 or more occurrences
of the preceding expression.
+ matches 1 or more occurrence
of the preceding expression.

The metacharacter + is very similar to *,
except it means "one or more repetitions",
as opposed to "zero or more repetitions".

By NimaNima (nimakarimian)

cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 2 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

Groups in metacharacters ()Groups in metacharacters ()

pattern = r"a(bc)(de)(f(g)h)i"
match = re.match(pattern, "‐
abcdefghijklmnop")
if match:
 print(match.group())
 print(match.group(0))
 print(match.group(1))
 print(match.group(2))
 print(match.groups())
>>>
abcdefghi
abcdefghi
bc
de
('bc', 'de', 'fgh', 'g')
>>>

The content of groups in a match can be
accessed using the group function.
A call of group(0) or group() returns the
whole match.
A call of group(n), where n is greater than 0,
returns the nth group from the left.
The method groups() returns all groups up
from 1.

\A \Z \b special sequences\A \Z \b special sequences

pattern = r"\b(cat)\b"
match = re.search(pattern,
"The cat sat!")
if match:
 print ("Match 1")
match = re.search(pattern,
"We s>cat<tered?")

\A \Z \b special sequences (cont)\A \Z \b special sequences (cont)

> if match:
 print ("Match 2")
match = re.search(pattern, "We scattered.")
if match:
 print ("Match 3")
>>>
Match 1
Match 2
>>>
"\b(cat)\b" basically matches the word "cat"
surrounded by word boundaries.

Additional special sequences are \A, \Z, and
\b.
The sequences \A and \Z match the
beginning and end of a string, respectively.
The sequence \b matches the empty string
between \w and \W characters, or \w
characters and the beginning or end of the
string. Informally, it represents the
boundary between words.
The sequence \B matches the empty string
anywhere else.

| "or" metacharacter| "or" metacharacter

pattern = r"gr(a|e)y"
match = re.match(pattern, "‐
gray")
if match:
 print ("Match 1")
match = re.match(pattern, "‐
grey")
if match:
 print ("Match 2")

| "or" metacharacter (cont)| "or" metacharacter (cont)

> match = re.match(pattern, "griy")
if match:
 print ("Match 3")
>>>
Match 1
Match 2
>>>

Another important metacharacter is |.
This means "or", so red|blue matches
either "red" or "blue".

named groups & noncapturing groupsnamed groups & noncapturing groups

pattern = r"(?P<first>abc)
(?:def)(ghi)"
match = re.match(pattern, "‐
abcdefghi")
if match:
 print(match.gro‐
up("first"))
 print(match.groups())
>>>
abc
('abc', 'ghi')
>>>

Named groups have the format (?P<na‐
me>...), where name is the name of the
group, and ... is the content. They behave
exactly the same as normal groups, except
they can be accessed by group(name) in
addition to its number.
Non-capturing groups have the format
(?:...). They are not accessible by the group
method, so they can be added to an
existing regular expression without breaking
the numbering.

By NimaNima (nimakarimian)

cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 3 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

* metacharacter* metacharacter

pattern = r"egg(spam)*"
if re.match(pattern, "egg"):
 print("Match 1")
if re.match(pattern, "eggspamspamegg"):
 print("Match 2")
if re.match(pattern, "spam"):
 print("Match 3")
>>>
match 1
match 2
>>>
The example above matches strings that start
with "egg" and follow with zero or more "‐
spam"s.
..

The metacharacter * means "zero or more
repetitions of the previous thing".

[] character classes[] character classes

pattern = r"[aeiou]"
if re.search(pattern, "gre‐
y"):
 print("Match 1")
if re.search(pattern, "qwe‐
rtyuiop"):
 print("Match 2")
if re.search(pattern, "‐
rhythm myths"):
 print("Match 3")
#The pattern [aeiou] in the
search function matches all
strings that contain any one of
the characters defined

[] character classes (cont)[] character classes (cont)

> >>>
Match 1
Match 2
>>>

Character classes provide a way to match
only one of a specific set of characters.

Search->>Group, Start,End,SpanSearch->>Group, Start,End,Span

match = re.search(pattern,
"eggspamsausage")
if match:
 print(match.group())
 print(match.start())
 print(match.end())
 print(match.span())
>>>
pam
4
7
(4, 7)
>>>

The regex search returns an object with
several methods that give details about it.
These methods include group which returns
the string matched, start and end which
return the start and ending positions of the
first match, and span which returns the start
and end positions of the first match as a
tuple.

By NimaNima (nimakarimian)

cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 4 of 4.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

	python regex(regular expression) Cheat Sheet - Page 1
	re.match()
	[] character classes 3
	Sub()
	? metacharacter
	special sequences
	^start &end
	{} metacharacters

	python regex(regular expression) Cheat Sheet - Page 2
	. (dot).
	[] character classes 2
	\d \s \w Special sequences
	search() and findall()
	+ metacharacter

	python regex(regular expression) Cheat Sheet - Page 3
	Groups in metacharacters ()
	named groups & noncapturing groups
	| "or" metacharacter
	\A \Z \b special sequences

	python regex(regular expression) Cheat Sheet - Page 4
	* metacharacter
	Search->>Group, Start,End,Span
	[] character classes

