python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

Cheatography

re.match (pattern, > Match 2

"spamspamspam") pattern = r"[* A-Z 1" >>>

#returns True if re.sea rch (pa ttern, "this Note, that "(.+) \1" is not the same as "(.+)
is all quiet"): (.+)", because \1 refers to the first group's

match returns an object representing the . o
match. if not. it returns None. pri nt(" Match 1") subexpression, which is the matched

NF me.cen mEh o brewn, U AR - expression itself, and not the regex pattern.

_ dEf G12 3"): There are various special sequences you

. pri nt(" Match 2") can use in regular expressions. They are
re.sub(pattern, repl, string,)
if re.sea rch (pa ttern, " THI - written as a backslash followed by another
count=0)
, _ , SIS ALL SHO UTI NG"): character.
str = "My name is David. Hi X i
. pri nt(" Match 3") One useful special sequence is a backslash
Pavid. ##The pattern [*A-Z] excludes and a number between 1 and 99, e.g., \1 or
IPENEEC = smE Talel ppercase strings \17. This matches the expression of the
newstr = re.sub (pa ttern, " - :

roup of that number.
Note, that the » should be group

Amy ", str)

: inside the brackets to invert
print (newstr)
the character class.

>>>
>>>
My name is Amy. Hi Amy. e "
Match 1 pattern = r"ic e(-)?c rea m
>>>
Match 2 if re.mat ch(pat tern, " ice -
This method replaces all occurrences of the 55 cr eam "):
pattern in string with repl, substituting all pri nt(" Match 1")
ceeenees unless count prOVided. ThIS — Lo et Ch(pat tern, L
method returns the modified string. cre am") :

The metacharacter ? means "zero or one

match = re.mat ch(pat tern,
pattern = r""gr.ys$"

"word word") repetitions".
The next two metacharacters are * and $. 17 mekahs
These match the start and end of a string, print ("Match 1") _
respectively. match = re.mat ch(pat tern, "?! pattern = r"9{1,3}s"
20 if re.mat ch(pat tern, " 9"):
if match: pri nt(" Match 1")
print ("Match 2") if re.mat ch(pat tern, " -
match = re.mat ch(pat tern, 999 "):
"abc cde") pri nt(" Match 2")
if match:
print ("Match 3")
>>>
Match 1
By Nima (nimakarimian) Published 21st July, 2020. Sponsored by Readable.com
Last updated 21st July, 2020. Measure your website readability!
Page 1 of 4. https://readable.com

cheatography.com/nimakarimian/

www.nimakarimian.ir

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

Cheatography

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

> if re.match(pattern, "9999"):
print("Match 3")

>>>

Match 1

Match 2

>>>

pattern = r'"gr.y"
this will be grey or gray or

anything else except newline

This matches any character, other than a
new line.

Curly braces can be used to represent the
number of repetitions between two
numbers.

The regex {x,y} means "between x and y
repetitions of something".

Hence {0,1} is the same thing as ?.

If the first number is missing, it is taken to
be zero. If the second number is missing, it
is taken to be infinity.

if re.search(pattern,
"eggspamsausagespam") :

pri nt(" Mat ch")
else:

pri nt("No match")

print(re.f in dal 1l (p attern,
" egg spa msa usa ges pam "))
>>>

Match

['spam', 'spam']

>>>

pattern = r" (\D+\d)"
match = re.mat ch(pat tern, "Hi
9991!M)
if match:
pri nt(" Match 1")
match = re.mat ch(pat tern, "1,
23, 456!'")
if match:
pri nt("™ Match 2")
match = re.mat ch(pat tern, " !
$2M)
if match:

pri nt(" Match 3")

pattern = r"[A -Z] [A- Z][O-
9]ll

if re.sea rch (pa ttern, -

LS8 "):
pri nt(" Match 1")

if re.sea rch (pa ttern, " E3"):
pri nt(" Match 2")

#The pattern in the example
above matches strings that
contain two alphabetic uppercase

letters followed by a digit.

The function re.search finds a match of a
pattern anywhere in the string.

The function re.findall returns a list of all
substrings that match a pattern.

By Nima (nimakarimian)

cheatography.com/nimakarimian/

www.nimakarimian.ir

More useful special sequences are \d, \s,
and \w.

These match digits, whitespace, and word
characters respectively.

In ASCII mode they are equivalent to [0-9], [
\t\n\r\flv], and [a-zA-Z0-9_].

In Unicode mode they match certain other
characters, as well. For instance, \w
matches letters with accents.

Versions of these special sequences with
upper case letters - \D, \S, and \W - mean
the opposite to the lower-case versions. For
instance, \D matches anything that isn't a
digit.

Character classes can also match ranges of
characters.

The class [a-z] matches any lowercase
alphabetic character.

The class [G-P] matches any uppercase
character from G to P.

The class [0-9] matches any digit.

Multiple ranges can be included in one
class. For example, [A-Za-z] matches a
letter of any cases.

pattern = r"g+ "

if re.mat ch(pat tern, " g"):
pri nt(" Match 1")

To summarize:

* matches 0 or more occurr ences

of the preceding expres sion.

+ matches 1 or more occurrence

of the preceding expres sion.

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 2 of 4.

The metacharacter + is very similar to *,
except it means "one or more repetitions",
as opposed to "zero or more repetitions".

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

Cheatography

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

pattern =
match = re.mat ch(pat tern, " -

abc def ghi jk1 mno p")

if match:
pri nt(mat ch.g ro up())
pri nt(mat ch.g ro up(0))
pri nt(mat ch.g ro up(l))
pri nt(mat ch.g ro up(2))
pri nt(mat ch.g ro ups())

>>>

abcdefghi

abcdefghi

bc

de

('be', 'de', 'fgh', 'g')

>>>

> if match:
print ("Match 2")
match = re.search(pattern, "We scattered.")
if match:
print ("Match 3")
>>>
Match 1
Match 2
>>>
"\b(cat)\b" basically matches the word "cat"
surrounded by word boundaries.

The content of groups in a match can be
accessed using the group function.

A call of group(0) or group() returns the
whole match.

A call of group(n), where n is greater than 0,

returns the nth group from the left.
The method groups() returns all groups up
from 1.

Additional special sequences are \A, \Z, and
\b.

The sequences \A and \Z match the
beginning and end of a string, respectively.
The sequence \b matches the empty string
between \w and \W characters, or \w
characters and the beginning or end of the
string. Informally, it represents the
boundary between words.

The sequence \B matches the empty string
anywhere else.

pattern = r"\b (ca t) \b"
match = re.sea rch (pa ttern,
"The cat sat!"™)
if match:

print ("Match 1")
match = re.sea rch (pa ttern,

"We s>c at< ter ed? ")

pattern = r"gr (al e)y "
match = re.mat ch(pat tern, " -
gra y")
if match:
print ("Match 1")
match = re.mat ch(pat tern, " -
gre y")
if match:

print ("Match 2")

By Nima (nimakarimian)

cheatography.com/nimakarimian/
www.nimakarimian.ir

Published 21st July, 2020.
Last updated 21st July, 2020.
Page 3 of 4.

> match = re.match(pattern, "griy")
if match:
print ("Match 3")
>>>
Match 1
Match 2

>>>

Another important metacharacter is |.
This means "or", so red|blue matches
either "red" or "blue".

pattern = r" (?P<first>abc)
(?:def) (ghi)"
match = re.mat ch(pat tern, " -
abc def ghi ")
if match:

pri nt(mat ch.g ro -
up(" fir st"))

pri nt(mat ch.g ro ups{())
>>>
abc
('abc', 'ghi')

>>>

Named groups have the format (?P<na-
me>...), where name is the name of the
group, and ... is the content. They behave
exactly the same as normal groups, except
they can be accessed by group(name) in
addition to its number.

Non-capturing groups have the format
(?:...). They are not accessible by the group
method, so they can be added to an
existing regular expression without breaking
the numbering.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

python regex(regular expression) Cheat Sheet
by Nima (nimakarimian) via cheatography.com/113429/cs/23788/

Cheatography

>>>>
pattern = r"eg g(s pam)*" Match 1
if re.mat ch(pat tern, " egg "): Match 2
pri nt(" Match 1") S

if re.mat ch(pat tern, " egg spa mspChafacier'dlasses provide a way to match
pri nt(" Match 2") only one of a specific set of characters.

if re.mat ch(pat tern, " spa m"):

>>> match = re.search(pattern,
match 1 "eggspamsausage")

match 2 if match:

>>> pri nt(mat ch.g ro up())

The example above matches strings that starEri nt(mat ch.s ta rt())

with " egg " and follow with zero or more "pfi nt (mat ch.e nd())
spa m"s. pri nt(mat ch.s pan())
..................................... S$500000000
The metacharacter * means "zero or more pam
repetitions of the previous thing". 4
7
pattern = r"[aeiou]" 2
if re.sea rch (pa ttern, " gre - The regex search returns an object with
y") several methods that give details about it.
pri nt(" Match 1") These methods include group which returns
if re.sea rch (pa ttern, " qwe - the string matched, start and end which
rty uio p"): return the start and ending positions of the
pri nt(" Match 2") first match, and span which returns the start
if re.sea rch (pa ttern, " - and end positions of the first match as a
rhythm myths") : tuple.
pri nt(" Match 3")
#The pattern [aeiou] in the
search function matches all
strings that contain any one of
the characters defined
By Nima (nimakarimian) Published 21st July, 2020. Sponsored by Readable.com
Last updated 21st July, 2020. Measure your website readability!
Page 4 of 4. https://readable.com

cheatography.com/nimakarimian/

www.nimakarimian.ir

http://www.cheatography.com/
http://www.cheatography.com/nimakarimian/
http://www.cheatography.com/nimakarimian/cheat-sheets/python-regex-regular-expression
http://www.cheatography.com/nimakarimian/
https://www.nimakarimian.ir
https://readable.com

	python regex(regular expression) Cheat Sheet - Page 1
	re.match()
	[] character classes 3
	Sub()
	? metach­aracter
	special sequences
	^start &end
	{} metach­ara­cters

	python regex(regular expression) Cheat Sheet - Page 2
	. (dot).
	[] character classes 2
	\d \s \w Special sequences
	search() and findall()
	+ metach­aracter

	python regex(regular expression) Cheat Sheet - Page 3
	Groups in metach­ara­cters ()
	named groups & noncap­turing groups
	| "­or" metach­aracter
	\A \Z \b special sequences

	python regex(regular expression) Cheat Sheet - Page 4
	* metach­aracter
	Search­->>­Group, Start,­End­,Span
	[] character classes

