Cheatography

Deep Learning Quiz 1 Cheat Sheet Cheat Sheet by Netsuiw via cheatography.com/200763/cs/42404/

S

Input, >

function

Supervised Learning		
Mapping from inputs to outputs	Need paired examples (x_i,y_i) to learn from	
Examples are	Regression, Text Classification, Image Classific- ation, etc.	
Normally in the form of	Input -> Relate family of eqs to input -> Output prediction	

Double descent &	(COD
Double descent is the phenomenon when	the test error increases while the training error is nearing zero and then decreases sharply and back to
The tendency of high-dime- nsional space to overwhelm the number of data points is called the curse of dimensionality	Two randomly sampled data points from normal are at right angles to each other with high likelihood

Double descent & COD (cont) But distance Volume of a from the origin diameter one of random hypersphere samples is becomes zero roughly and generate constant and random points most of the uniformly in volume of a hypercube, high dimensratio of nearest ional orange to farthest is in the peel becomes close

Loss/Cost function and Train/Test Measurhow bad a model ement of performs

to one

not in the pulp

are

Trains on	Find argmin of this
pair of	loss function
data	
Test on	Measure the loss
seperate	there and see its
set of	generalizing power
data	
Different	Squared Loss, log
IOSS	likiinood, ramp ioss,
functions	etc

Counting number of parameters

Each parameter multiplies its source and adds to its target

Initialization

If on initalization	Then it can
the variance is	have floating
small or big	point errors

By Netsuiw

cheatography.com/netsuiw/

Not published yet. Last updated 15th February, 2024. Page 1 of 3.

Initialization (cont)

So, we	He Initalization
want to set	does this by
variance	setting variance
same in	2/D_h where
forward	variance of k or
and	k+1 is same at
backward	layer k+1 or k
pass	

layer, \mathbf{h}_1 $D_1 = 4$ layer, \mathbf{h}_2 $D_2 = 2$ $D_i = 3$ $D_3 = 3$

Regularization techniques

Explicit	This is also known as
regula-	the prior in the
rization	probabilistic view.
is	Normally L2 regula-
adding	rization is used
of a	where the square
regula-	weights are added
rizing	and controlled by a
term to	regularization term
the loss	

Regularization techniques (cont)

Implicit

regualrization is the natural tendencies of optimization algorithms and other aspects of the training process Early stopping is the process of stopping training early to not overfit the weights since they start small Dropout is the technique of killing random units. Can eliminate kinks in function that are far from data and don't contribute to

That even without explicitly adding regularization techniques, help improve the generalization performance of a model eg SGD due to batch sizes (cause of randomness) Ensembling is the collague of different models and is averaged then (by mean or median). Different subset of data resampled is bagging Adding noise can also improve generalization

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

training loss

Cheatography

Deep Learning Quiz 1 Cheat Sheet Cheat Sheet by Netsuiw via cheatography.com/200763/cs/42404/

Regularizati	on techniques (cont)	Momentu
Can also use baysian inference to provide more inform- ation (to priors)	Transfer learning, multi-task learning, self-supervised learning, and data augmentation can be used too to improve generaliz- ation	Normal- izing the gradients can lead being stu if we don' land on th optimal point excatly
Bias variano		Schocast
Variance is the uncert- ainty in fitted model due to choice of training	Bias is systematic deviation from the mean of the function we are modeling due to limitations in our model	Gradient descent might be slow Compute
set	model	gradient based on
Noise is inherent uncertainty in the true mapping from input to output	Can reduce variance by adding more datapoints	only a sui of points mini-batc One pass though th data is ca an epoch
Can	But doing one or	
reduce	the other	
bias by making	increases since	Backprop
model more complex	model = overfitting = more variance	Two passes are done,
		forward

Momentum & Adam

We can think Momentum is the weighted of momentum sum of the as a current gradient prediction on and previous where we are gradients stepping

ial-	Adam prevents
the	that by computing
ents	mean and
ead to	pointwise
stuck	squared gradients
don't	with momentum
on the	and moderating
al	near start of the
	sequence
h.	

asiic Gia	lient Descent
ent nt be	And not all gradients needed to find optimal point
ute ent on subset nts – a atch	Work through dataset sampling without replac- ement
ass h the s called och	This can escape from local minima, but adds noise. Uses all data equally but

opogation

Two	Forward pass
passes	deals with knowing
are done,	the activations at
forward	each layer and
pass, and	how it affects the
backwards	loss and calcul-
pass	ating inbetween
	values

We do not Backward know gradients pass though so the calculates the loss cannot be gradients then modified (since of the loss units have a function but in dependancy reverse chain at update) This is very Also the efficient but is problem is memory trying to split hungry the computation proces apart (i.e. maybe parts exist in different computers) Gradient by step walking descent towards it, i.e., finds goes against the optimal gradient point (for calculated

Backpropogation (cont)

function) And then params derivative are updated by of loss subtracting. A learning rate is function wrt applied to speed/slow it parameters down calculated

convex

So

to

is

Deep neural networks

Simply	Better than simply
neural	transposing the
networks	output of one
with more	shallow network to
than one	another (less
hidden	params and
layer	regions)

Deep neural networks (cont)

Basically outputs from hidden units	Go into another hidden layer as inputs			
Also obeys the universal approximation theorem	Difference from shallow network is more regions per parameters			
The hyperp- arameters are K for width of network and D_i for number of units of the network at layer i	There exists problems where shallow networks would need way too many units to approximate			
Convolutional net	works			
Parameters only look at local image patches and so share parameters across image Stride = shift by k positions for each output, Kernel	The convol- utional operation averages together the inputs Stride decreases output size,			

е Kernel size size = weight a different number combines of inputs for each info from output, Dilated or larger area, atrous convolwhile the utions = interslast one uses few perse kernel values with zeros params while combine info

By Netsuiw

cheatography.com/netsuiw/

Last updated 15th February, 2024. Page 2 of 3.

Not published yet.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Deep Learning Quiz 1 Cheat Sheet Cheat Sheet by Netsuiw via cheatography.com/200763/cs/42404/

Convolutional networks (cont)		Reinforcement Learning (cont)		Shallow neural network (cont)		Unsupervised Learning	
But we want to lose information done by apply several convol- utions and stack them in channels (feature maps)	Receptive fields is the the region in the input space that a particular CNN's feature is	Flaws Schocas are credit as that it reward a is move or and Exp tation tra when to when to	tic, temporial signment, i.e., achieved by past moves, loration-exploi- ade-off, i.e. explore and not	Called Universal approx- shallow imation theorem since states that enough only hidden layers can one approximate to any hidden continuous function layer on a compact subset		Learning a dataset without any labels Examples are	So dataset is orgnaized in input only fashion Clustering, Outlier Finding, Generating examples, fill
Benifit of CNN is better inductive bias, forcing the network to process each location similarly, share info, search from small family of input/- output maps, etc	affected by Downsa- mpling is the reducing of positions in data (max pooling most common ie take max), while upsampling is the increase	Shallow neural ne Use non convex (activation	etwork to mold family of	Maximum like Points in a database can be from	elihood The main idea of using likelihood function is to	There are generative models Also probab- ilistic generative models	missing data like generative adversal networks
		function)	functions into dataset	an underlying	estimate this distribution		Who learn the dist over data. Examples are autoencoders, normalizing flows, and diffusion models
		Common activation functions are	ReLU, sigmoid/s- oftmax (as final layer), tanh function (kinda like sigmoid), etc	Model predicts a conditional probability Pr(y x)=P- r(y θ)=Pr(y -	Here the loss function aims to have correct outputs have high probability		
Reinforcement Learning		Pass a set of	So that a	f[x,φ])			
Create a set of states, actions, and rewards	Goal is to maximize reward by finding correct states	normally and activation function transforms it (known as	c specific and weight is activated or not as it depending s on that yer) function	argmax for φ (or argmin if we negative the objective	very small value so log is taken to make it a summation		
No data involved	Is recieved by the world build and explored	hidden layer)		function) Softmax is used in the	It converts a vector of K real		
Examples are	Chess, Video games, etc			case of multiclass categoriz- ation	numbers into a probability distri- bution of K possible outcomes		

By Netsuiw

cheatography.com/netsuiw/

Not published yet. Last updated 15th February, 2024. Page 3 of 3. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com